Analisi matematica I/Premesse
Principi di insiemistica e funzioni elementari
- Numeri naturali
- Numeri interi
- Numeri razionali
- Numeri reali
- Numeri reali (seconda parte)
- Numeri complessi
- Funzioni
- Funzioni circolari
- Funzioni radice, esponenziale e logaritmica
Le successioni e le serie numeriche in
- Successioni reali
- Limiti di successioni reali
- Teoremi sulle successioni
- Algebra dei limiti delle successioni
- Esistenza del limite di una successione
- Limiti inferiori e superiori
- Forme indeterminate di successioni
- Serie numeriche
Limiti di funzioni reali a una variabile reale
- Punti di accumulazione e chiusura di un insieme
- Compattezza di un insieme
- Definizione di limite per funzioni reali di variabile reale
- Esistenza del limite per funzioni reali di variabile reale
- Algebra dei limiti
- Teorema del confronto e teorema di Cauchy
Monotonia, continuità, massimi, minimi e uniforme continuità
- Analisi matematica I/Funzioni monotone
- Analisi matematica I/Funzioni continue reali di variabile reale
- Analisi matematica I/Massimi e minimi di una funzione continua
- Analisi matematica I/Funzioni uniformemente continue
Calcolo differenziale in e studio di funzioni
- Analisi matematica I/Funzioni derivabili e derivata di una funzione
- Analisi matematica I/Algebra delle derivate
- Analisi matematica I/Teorema di Fermat, di Rolle, di Lagrange, di Cauchy
- Analisi matematica I/Test di monotonia, teorema Darboux, di De L'Hopital
- Analisi matematica I/Polinomi di Taylor
- Analisi matematica I/Studio di funzioni reali a valori reali
- Analisi matematica I/Funzioni convesse
Calcolo integrale secondo Riemann per funzioni reali di una variabile reale
- Analisi matematica I/Integrale di Riemann
- Analisi matematica I/Altri criteri di integrabilità secondo Riemann
- Analisi matematica I/Calcolo degli integrali di Riemann
- Analisi matematica I/Importanti teoremi del calcolo integrale
- Analisi matematica I/Integrale generalizzato
Successioni e serie di funzioni
VECCHIO Elementi di base
- Gli insiemi e i vari tipi di insiemi
- Note storiche sugli insiemi
- I numeri reali
- I numeri complessi
- Sommatorie
- progressione geometrica
- fattoriale di n
- formula di Newton
- Potenze e radicali
- Esponenziali e logaritmi
- Insiemi infiniti
- Massimi e minimi
- Funzioni
Serie e successioni
- Successioni: definizione
- Limiti: definizione
- Successioni monotone
- Calcolo dei limiti
- Limite di successioni
- Il numero di Nepero (e)
- Confronti, stime asintotiche e gerarchia degli infiniti
- Limiti notevoli
- Serie numeriche: definizione
- Serie a termini non negativi
- Serie a termini di segno variabile
Funzioni di una variabile, limiti e continuità
- Limiti di funzioni da R a R
- Limiti di funzioni da Rn a Rm
- Funzioni numeriche e generalità
- Grafico di una funzione
- Funzioni limitate
- Funzioni simmetriche, pari e dispari
- Funzioni monotone
- Funzioni periodiche
- Limiti, continuità, asintoti
- Funzioni elementari: funzioni potenza, esponenziali e logaritmiche, trigonometriche
- Funzioni composte e inverse (invertibili e non invertibili)
- Funzioni trigonometriche inverse
Calcolo differenziale per funzioni di una variabile
- Introduzione
- Il rapporto incrementale
- Derivata di una funzione: derivata e retta tangente; derivate di funzioni elementari; punti angolosi, cuspidi, flessi a tangente verticale
- Regole di calcolo delle derivate: algebra delle derivate; derivate di una funzione composta; derivata di funzione inversa
- Le derivate fondamentali
- Il teorema del valor medio e le sue conseguenze: punti stazionari, massimi e minimi locali; teorema del valor medio e test di monotonia;
- Il teorema di de L’Hospital
- Calcolo differenziale e approssimazioni: differenziale e approssimazione lineare
- o piccolo
- Significato geometrico della derivata seconda, derivata seconda, concavità e convessità
- Formula di Taylor del secondo ordine & formula di Taylor di ordine n
- Studio del grafico di una funzione
Calcolo integrale per funzioni di una variabile
- Proprietà dell'integrale
- Il teorema fondamentale del calcolo integrale
- Metodo di ricerca della primitiva
- Calcolo di integrali indefiniti e definiti: integrali immediati, per scomposizione e per sostituzione; integrazione per parti
- Funzioni integrabili
- integrali generalizzati: integrali di funzioni discontinue
- Integrazione di funzioni non limitate
- Criteri di integrabilità al finito
- Integrazione su intervalli illimitati
- Criteri di integrabilità all’infinito
- Ricerca delle primitive per alcune classi di funzioni: integrazione di una funzione razionale
- Integrazione delle funzioni trigonometriche
Per affrontare lo studio dell'Analisi Matematica è necessario il possesso di un linguaggio appropriato, che si realizza tramite locuzioni e notazioni specifiche, atte a sintetizzare il linguaggio matematico.
Inoltre, come un artigiano che voglia costruire un manufatto deve conoscere alla perfezione la natura del materiale su cui opera, altrettanto il matematico deve possedere grande familiarità con i numeri, che sono per così dire il materiale di costruzione della matematica, allo scopo di essere in grado di manipolare formalismi algebrici e logici.