Controlli automatici/Inseguimento riferimenti polinomiali

Indice del libro

Caratteristiche di un sistema di controllo in retroazione

modifica
 
Schema a blocchi di un sistema di controllo in catena chiusa con retroazione dall'uscita in assenza di disturbi

Un sistema di controllo in retroazione, in assenza di disturbi, avente una funzione d'anello   in forma minima e priva di zeri nell'origine, è di tipo   se la sua funzione d'anello   ha un polo nell'origine ( ) di molteplicità  .

Il guadagno stazionario   della funzione d'anello   del sistema di controllo in retroazione di tipo   in esame è definito:

 
  • se il sistema è di tipo 0, il guadagno stazionario   è detto guadagno di posizione:
     
  • se il sistema è di tipo 1, il guadagno stazionario   è detto guadagno di velocità:
     
  • se il sistema è di tipo 2, il guadagno stazionario   è detto guadagno di accelerazione:
     

La funzione di trasferimento d'errore   del sistema di controllo in retroazione in esame è definita:

 

Segnali canonici di riferimento

modifica

Le specifiche relative alla precisione di inseguimento in regime permanente vengono formulate in riferimento a un certo segnale canonico polinomiale  :

 

dove   è il grado del segnale  :

  •  : gradino:
     
es.: sistema meccanico dove l'uscita è la posizione: posizione costante pari a  
  •  : rampa:
     
es.: sistema meccanico dove l'uscita è la posizione: velocità costante pari a  
  •  : arco di parabola:
     
es.: sistema meccanico dove l'uscita è la posizione: accelerazione costante pari a  

Esistono inoltre i segnali canonici di riferimento sinusoidali:

 

Inseguimento di riferimenti polinomiali

modifica
Errore in regime permanente  
Riferimento  
grado 0:   grado 1:   grado 2:  
S
i
s
t
e
m
a
tipo 0      
tipo 1 0    
tipo 2 0 0  

Tramite il teorema del valore finale è possibile valutare l'errore di inseguimento in regime permanente  :

 

Dato un segnale canonico di riferimento polinomiale   di grado  :

  • se il tipo del sistema è pari a  , l'errore di inseguimento in regime permanente   è finito e non nullo, e diminuisce all'aumentare del guadagno stazionario   → anche in assenza di disturbi si ha un errore intrinseco in regime permanente  , che può essere ridotto (ma non annullato) aumentando il guadagno stazionario  ;
  • se il tipo del sistema è maggiore di  , l'errore di inseguimento in regime permanente   è sempre nullo → il sistema è in grado di inseguire il segnale canonico di riferimento polinomiale, e l'uscita   del sistema converge perfettamente al valore desiderato  ;
  • se il tipo del sistema è minore di  , l'errore di inseguimento in regime permanente   è sempre infinito → il sistema non è in grado di inseguire il segnale canonico di riferimento polinomiale, e la distanza tra l'uscita   del sistema e il valore desiderato   cresce indefinitamente.[1]

Sistemi con zeri nell'origine

modifica

Se la funzione d'anello   presenta almeno uno zero nell'origine ( ), il sistema risulta certamente di tipo 0: essendo in forma minima per ipotesi, la funzione d'anello   non può presentare poli nell'origine → il sistema non è in grado di inseguire segnali canonici di riferimento polinomiali di grado superiore a zero.

Nel caso del segnale canonico di riferimento polinomiale   di grado zero, l'unico che il sistema è in grado di inseguire:

 

l'uscita   del sistema converge a zero in regime permanente:

 

Implicazioni sul progetto del controllore

modifica

Le specifiche di precisione relative all'errore di inseguimento in regime permanente   (riferite a riferimenti polinomiali) possono imporre vincoli sulla funzione d'anello  . Dato un processo   con funzione di trasferimento   (che include il sistema da controllare  ), i vincoli sono imposti sulla funzione di trasferimento   del controllore  .

Vincoli sul numero di poli nell'origine

modifica

Sia   il numero di poli nell'origine di una generica funzione di trasferimento  . Dato un segnale canonico di riferimento polinomiale   di grado  , l'errore di inseguimento in regime permanente   è finito se il sistema è almeno di tipo  :

 

Dato un processo  , e quindi noto  , per garantire che il sistema sia almeno di tipo  :

  • se  , non è necessario introdurre poli nell'origine nella funzione di trasferimento   perché l'errore in regime permanente   risulta già finito se   o nullo se  ;
  • se  , è necessario che la funzione di trasferimento   abbia un numero   di poli nell'origine pari a  .[2]

Dato un segnale canonico di riferimento polinomiale   di grado  , l'errore di inseguimento in regime permanente   è nullo se il sistema è almeno di tipo  :

 

Dato un processo  , e quindi noto  , per garantire che il sistema sia almeno di tipo  :

  • se  , non è necessario introdurre poli nell'origine nella funzione di trasferimento   perché l'errore in regime permanente   risulta già nullo;
  • se  , è necessario che la funzione di trasferimento   abbia un numero   di poli nell'origine pari a  .[3]

Vincoli sul guadagno stazionario

modifica

Se il tipo del sistema è pari al grado del riferimento polinomiale  , l'errore di inseguimento in regime permanente  , finito e non nullo, si riduce all'aumentare del guadagno stazionario   della funzione d'anello  , e quindi si riduce all'aumentare del guadagno stazionario   della funzione di trasferimento   del controllore:

 
  1. Un errore di inseguimento   infinito non significa che l'uscita   del sistema diverge.
  2. Teoricamente è possibile introdurre un numero di poli arbitrario tale che  , ma limitandosi a   poli si evita di complicare inutilmente la funzione di trasferimento  .
  3. Teoricamente è possibile introdurre un numero di poli arbitrario tale che  , ma limitandosi a   poli si evita di complicare inutilmente la funzione di trasferimento  .