Elettronica pratica/Circuito RLC

Introduzione
  1. Scopo di questo libroElettronica pratica/Scopo
  2. PrerequisitiElettronica pratica/Prerequisiti
  3. PrefazioneElettronica pratica/Prefazione
Capitolo 1. Basi di elettrotecnica
  1. Carica elettrica e legge di CoulombElettronica pratica/Carica elettrica e legge di Coulomb
  2. Celle elettricheElettronica pratica/Celle elettriche
  3. ResistoriElettronica pratica/Resistori
  4. CondensatoriElettronica pratica/Condensatori
  5. InduttoriElettronica pratica/Induttori
  6. PileElettronica pratica/Pile
  7. Altri componentiElettronica pratica/Altri componenti
  8. Leggi delle tensioni e correnti CCElettronica pratica/Leggi delle tensioni e correnti CC
  9. Analisi nodaleElettronica pratica/Analisi nodale
  10. Analisi di reteElettronica pratica/Analisi di rete
  11. Circuiti equivalenti Thevenin e NortonElettronica pratica/Circuiti equivalenti Thevenin e Norton
  12. Analisi circuitale in CCElettronica pratica/Analisi circuitale in CC
  13. Strumenti di misuraElettronica pratica/Strumenti di misura
  14. Rumore nei circuiti elettroniciElettronica pratica/Rumore nei circuiti elettronici
Capitolo 2. Circuiti in CA
  1. Corrente e tensione in CAElettronica pratica/Corrente e tensione in CA
  2. FasoriElettronica pratica/Fasori
  3. ImpedenzaElettronica pratica/Impedenza
  4. Stato stazionarioElettronica pratica/Stato stazionario
Capitolo 3. Analisi transitoria
  1. Circuito RCElettronica pratica/Circuito RC
  2. Circuito RLCElettronica pratica/Circuito RLC
Capitolo 4. Circuiti analogici
  1. Circuiti analogiciElettronica pratica/Circuiti analogici
  2. Valvole elettronicheElettronica pratica/Valvole elettroniche
  3. DiodiElettronica pratica/Diodi
  4. AmplificatoriElettronica pratica/Amplificatori
  5. Amplificatori operazionaliElettronica pratica/Amplificatori operazionali
  6. Moltiplicatori analogiciElettronica pratica/Moltiplicatori analogici
Capitolo 5. Circuiti digitali
  1. Circuiti digitaliElettronica pratica/Circuiti digitali
  2. Algebra BooleanaElettronica pratica/Algebra Booleana
  3. TTLElettronica pratica/TTL
  4. CMOSElettronica pratica/CMOS
  5. Circuiti integratiElettronica pratica/Circuiti integrati
Elementi dei circuiti digitali
  1. TransistoreElettronica pratica/Transistore
  2. Porte logiche fondamentaliElettronica pratica/Porte logiche fondamentali
  3. Flip-FlopElettronica pratica/Flip-Flop
  4. ContatoriElettronica pratica/Contatori
  5. SommatoriElettronica pratica/Sommatori
  6. MultiplatoriElettronica pratica/Multiplatori


Architettura dei computer
  1. RAM e ROMElettronica pratica/RAM e ROM
  2. RegistriElettronica pratica/Registri
  3. ALUElettronica pratica/ALU
  4. Unità di controlloElettronica pratica/Unità di Controllo
  5. I/O
Convertitori A/D e D/A
  1. Conversione A/D e D/AElettronica pratica/Conversione A/D e D/A
Appendice
  1. DefinizioniElettronica pratica/Definizioni
  2. FormuleElettronica pratica/Formule
  3. Passo di elaborazioneElettronica pratica/Passo di elaborazione (da collocare)

Circuito RLCModifica

Il circuito RLC consiste di un resistore R, di un condensatore C e di un induttore L . I circuiti RLC possono venire caratterizzati sia nel dominio del tempo che in quello della frequenza.

Analisi del circuito RLC nel dominio del tempoModifica

Quando l'interruttore viene chiuso si applica una tensione a gradino al circuito. Poniamo uguale a 0 il tempo in cui l'interruttore è stato chiuso, cosicché la tensione prima che l'interruttore sia chiuso è 0 volt e la tensione dopo la sua chiusura è di V volt. La tensione ai capi del condensatore consiste di una risposta forzata   e di una risposta naturale   talché:

 

La risposta forzata è dovuta alla chiusura dell'interruttore, che è la tensione V a  . La tensione naturale dipende dai valori

del circuito ed è data qui di seguito.

Definiamo la frequenza polare

 

ed il fattore di smorzamento

 

Dipendendo dai valori di   e   il sistema può essere caratterizzato come:

  1. Se   il sistema è sovrasmorzato. La soluzione ha la forma:
     
  2. Se   il sistema è a smorzamento critico. La soluzione del sistema ha la forma:
     
  3. Se   il sostema è sottosmorzato. La soluzione del sistema ha la forma:
     

Analisi del circuito RLC nel dominio delle frequenzeModifica

Definiamo la frequenza di polo   e il fattore di smorzamento   come:

 
 

Per analizzare il circuito prima calcoliamo la funzione di trasferimento H(s) nel dominio del campo complesso. Per il circuito RLC della figura 1 si ha:

 

 

Quando si chiude l'interruttore, si applica una forma d'onda a gradino al circuito RLC.Il gradino è dato da Vu(t). Dove V è la tensione del gradino e u(t) è la funzione a gradino unitario. L'uscita è data dalla convoluzione della risposta d'impulso h(t) e della funzione a gradino Vu(t). Pertanto l'uscita è data dalla moltiplicazione H(s)U(s) nel dominio del campo complesso, dove  è data dalla trasformata di Laplace disponibile nell'appendice.

La convoluzione di u(t) e h(t)è data da:

 

Dipendendo dai valori di   e   il sistema può essere caratterizzato come:

3. Se  , il sistema è sottosmorzato. La soluzione di h(t)u(t) è data da:

 .

Altri progettiModifica