Algebra vettoriale/Componenti vettoriali: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Riga 209:
Con ciò si conclude l'algebra vettoriale.
 
== Trasformazione delle componenti di un vettore sottocon rotazionela dirotazione undel sistema di coordinate rettangolari ==
[[File:Rotation of a coordinate system.png|right|rotazione di un sistema diriferimento]]<br>
Si è visto che un ve ttore può venire descritto analiticamente tramite un insieme dinumeri che, in un qualche modo, sono correlati a un sistema di riferimento scelto di vettori unitari. Tali tre numeri devono ubbidire a certe specifiche regole, poiché non tutti gli insiemi di tre numeri costituiscono un vettore. Una di tali regole, per esempio, è la relazione con cui le componenti di un vettore si trasformano ruotando un sistema di coordinate rettangolari.<br>
 
Siano x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub> , le componenti del vettore posizione <math>\vec{\mathcal{r}}</math> rispetto ad un sistema di riferimento di vettori ortogonali unitari <math>\vec{\mathcal{e_1}},\vec{\mathcal{e_2}},\vec{\mathcal{e_3}}</math>. Se si fa ruotareruota questo sistema, mantenendo fissa l'origine, si ottiene un nuovo sistema ortogonale. Si denoti il nuovo sistema con <math>\vec{\mathcal{e'_1}},\vec{\mathcal{e'_2}},\vec{\mathcal{e'_3}}</math>. Riguardo a questo sistema indicizzato '''x<sub>1</sub>''', '''x'<sub>2</sub>''Si ha ', '''x'<sub>3</sub>''' siano le componenti le componenti del vettore posizione. Allora si ha<br>
<math>\ \ \ \ \ \ \ \vec{\mathcal{r}}=\sum_{x=1}^3 x_i\vec{\mathcal{e_i}}=\sum_{j=1}^3 x_j\vec{\mathcal{e_j}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (26)</math>.<br>