Differenze tra le versioni di "Probabilità/Introduzione"

m
Bot: apostrofo dopo l'articolo indeterminativo e modifiche minori
m (Bot: apostrofo dopo l'articolo indeterminativo e modifiche minori)
La teoria della [[Probabilità]] formula una conoscenza incompleta riguardante la probabilità di un evento. Ad esempio, un meteorologo potrebbe dire che c'è un 60% di possibilità che domani piova. Questo significa che in 6 casi su 10 , quando la terra si trova nelle stesse condizioni, pioverà .
 
Una '' probabilità '' è un numero reale <math>p \in [0,1]</math>. Nel linguaggio comune, il numero è generalmente espresso in percentuale (da 0% a 100%) anziché in numero decimale (cioè, una probabilità di 0,25 si esprime come 25%). Una probabilità del 100% significa che un evento è certo. Nel linguaggio quotidiano, con una probabilità dello 0% si intende che l'evento è impossibile, ma (di solito ci sono un' infinità di possibili risultati) un evento, a cui viene attribuito originariamente una probabilità dello 0%, può essere quello che effettivamente avviene. In alcune situazioni, è certo che all'evento che accade è stato all'inizio attribuito una probabilità pari a zero (ad esempio, nel selezionare un numero tra 0 e 1, la probabilità di selezionare un qualsiasi numero è zero, ma è certo che un tale numero verrà selezionato).
 
Un altro modo per riferire la probabilità di un risultato è dalle sue '' possibilità '': il rapporto tra la probabilità di "successo" (l'evento si verifica) e la probabilità di "fallimento" (l'evento non si verifica). Nel mondo delle scommesse (dove viene sviluppata la "probabilità") le possibilità sono espresse come il rapporto tra la somma puntata da ciascun partecipante nella scommessa. Per esempio: un bookmaker offre la probabilità di 3/1 "su" un cavallo, pagherà allo scommettitore tre volte la sua puntata (se il cavallo vince). Infatti, il bookmaker (evitando fattori come la sua possibile necessità di "pagare" scommesse che lo portino alla possibilità di una perdita complessivamente inaccettabile) dichiara di pensare che il cavallo ha un 1/4 di possibilità di vittoria. Se utilizziamo la definizione matematica di probabilità, "possibilità di vincere" : "possibilità di non vincere" = 1/4: 3/4 = 1: 3 o 1/3. Così un evento con una probabilità del 25% ha il 33% di possibilità. Questa disparità è ancora più evidente quando un evento ha una probabilità del 50% (per esempio, le probabilità di una moneta che mostra testa è del 50%: 50% = 1: 1 o 1).
 
==Tipi di probabilità==
*Delle 52 carte, ci sono 13 carte del seme fiore. Quindi, se l' evento di interesse è pescare una carta del seme di fiori, ci sono 13 risultati favorevoli e la probabilità che questo evento accada è <math>\frac{13}{52} = \frac{1}{4}</math>.
*Ci sono quattro re, uno per ogni seme. La probabilità di pescare un re è <math>\frac{4}{52} = \frac{1}{13}</math>.
*Qual' è la probabilità di pescare un re O una carta di seme fiori? Questo esempio è leggermente più complicato in quanto non si può semplicemente sommare il numero di risultati favorevoli di ogni singolo evento (<math>4 + 13 = 17</math>) in quanto andremmo a contare due volte lo stesso risultato (il re di fiori). Il metodo giusto per risolvere questo problema è <math>\frac{16}{52}</math> ovvero <math>\frac{13}{52}+\frac{4}{52}-\frac{1}{52}</math> che si può scrivere come <math>p(\textrm{fiori})+p(\textrm{re})-p(\textrm{re\ di\ fiori})</math>.
 
 
La probabilità classica ha però dei notevoli limiti. La definizione di probabilità presuppone che tutti i risultati possibili siano equiprobabili. Se questo può essere utile in situazioni quali pescare carte, tirare dadi, o estrarre palline da un 'urna, in eventi nei quali i risultati non sono equiprobabili, la probabilità classica non offre alcun metodo risolutivo.
 
Queste limitazioni possono portare a dichiarazioni erronee riguardo la probabilità. Un esempio comune: posso essere colpito da una meteorite domani. Apparentemente ci sono due possibili situazioni:domani verrò colpito da un meteorite oppure domani non verrò colpito da un meteorite. Quindi la probabilità che domani io venga colpito da un asteroide è <math>\frac{1}{2} = 50%</math>.
Chiaramente la soluzione errata non è da attribuirsi alla teoria classica della probabilità ma al suo utilizzo in situazioni che non possono essere studiate grazie a queste teorie.
 
Queste limitazioni, comunque, non rendono la probabilità classica inutile. Nello sviluppo di un approccio assiomatico alla probabilità, la teoria classica è un importante fattore guida.
 
===Probabilità empirica o statistica o frequenza di eventi===
3 150

contributi