Differenze tra le versioni di "Meccanica quantistica/Momento angolare"

nessun oggetto della modifica
== Composizione dei momenti angolari ==
Funzione d'onda di un sistema di due particelle con momenti angolari <math>l_1</math> e <math>l_2</math>:
:<math>\psi_{lm}= \sum C_{m_1m_2}^{lm}\psi^{(1)}_{l_1m_1}\psi^{(2)}_{l_2m_2})</math>
Le quantità <math>C_{m_1m_2}^{lm}</math> sono i '''coefficienti di Clebsch-Gordan'''.
 
irriducibile di rango ''k''. In particolare, a un tensore sferico <math>f_{1m}</math> corrisponde un vettore '''f''':
:<math>f_{10}=if_z,\qquad f_{1,\pm 1}=\mp \frac{i}{\sqrt{2}}(f_x \pm if_y)</math>
 
== Teorema di Wigner-Eckart ==
 
Gli elementi di matrice di un tensore sferico
hanno la forma seguente:
:<math><n'l'm'|f_{kq} |nlm > =\sum C_{m'q}^{lm}
<n'l'||f_{k}||nl ></math>
dove <math><n'l'|f_{k}|nl ></math> sono gli '''elementi di matrice ridotti''', indipendenti da <math>m</math>, <math>m'</math> e <math>q</math>.
 
Per <math>k=1</math> si ottengono delle espressioni per gli [[Meccanica quantistica/Concetti fondamentali#Matrici|elementi di matrice]] di un vettore '''f'''.
Gli elementi di matrice non nulli di <math>f_z</math> corrispondono a delle transizioni <math>m \rightarrow m</math>, e gli elementi di matrice di <math>f_x</math> e <math>f_y</math> a delle transizioni <math>m \rightarrow m \pm 1</math>.
 
== Spin ==
Utente anonimo