Intensificazione dell'intelligenza/Il metodo scientifico: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
traduzione della prima metà
 
Nessun oggetto della modifica
Riga 4:
#[[#Osservazione|Osservazione]]
#[[#Ipotesi|Ipotesi]] (Una spiegazione teorica e ipotetica di ciò che si è osservato)
#[[#PrevisionePrevisioni dalle ipotesi|Previsione]] (deduzioni logiche in conseguenza delle ipotesi)
#[[#Verifica|Verifica]] (Un [[w:test|test]] che verifica la correttezza o meno delle ipotesi e delle previsioni) </div>
Questo metodo è anche chiamato [[w:|metodo ipotetico-deduttivo|metodo ipotetico-deduttivo]].
Ogni passaggio è sottoposto al controllo di tutti gli altri, per ridurre la presenza di errori.
Riga 16:
Le misurazioni scientifiche in genere vengono tabulate, sistemate in grafici, e analizzate statisticamente.
Le misurazioni possono essere fatte in un ambiente controllato, come un laboratorio, o fatte su oggetti più o meno inaccessibili o incontrollabili, come le stelle.
Spesso richiedono strumentazioni scientifiche più o meno sofisticate, come [[w:termometro|termometri, miscroscopi]] o voltometri[[w:microscopio|miscroscopi]], e buona parte del progresso di un campo scientifico è legato alla loro invenzione e al loro sviluppo.
 
Le misurazioni richiedono l'uso di "[[w:unità di misura|unità di misura]]''. Esempio: vogliamo misurare la lunghezza di una stanza, ma non abbiamo un metro in casa. Allora, cominciamo a fare dei passi di uguale lunguezza fino a coprire tutta la lunghezza della stanza. Mettiamo che la stanza misuri, diciamo, 8 passi. Abbiamo preso un nostro "passo" come unità di misura della stanza.
Riga 39:
Se il risultato è quello aspettato, allora l'ipotesi può essere corretta, ma richiede ancora altri accertamenti.
 
[[Image:Gravitational lens-full.jpg|right|thumb|200px|[[w:gravitationallente lensinggravitazionale|Einstein'sLa predictionprevisione di Einstein (1907): Lightla luce si bendspiega in aun gravitationalcampo fieldgravitazionale]]]]
 
La teoria di [[w:Einstein|Einstein]] sulla [[w:relatività generale|relatività generale]] fa diverse previsioni scpefiche sulla struttura osservabile dello [[w:spazio-tempo|spazio-tempo]], come quella che la [[w:luce|luce]] si curva in un [[w:campo gravitazionale|campo gravitazionale]], e che la misura in cui si curva dipende in maniera precisa dalla forza di quel campo gravitazione. Le osservazioni di [[w:Arthur Eddington|Arthur Eddington]] fatte durante l'[[w:eclissi solare|eclissi solare]] del 1919, confermarono la teoria della Relavitià Generale piuttosto che quella della [[w:gravitazione|gravitazione]] [[w:Isaac Newton|Newtoniania]].
 
===Verifica===
 
Una volta che una previsione è stata fatta, un [[w:esperimento|esperimento]] viene progettato per metterla alla prova. L'esperimento può sia confermare che smentire l'ipotesi che si sta vagliando.
Riga 54:
 
Una volta che l'esperimento è completo, i ricercatori determinano se i risultati ottenuti corrispondono o meno a ciò che era stato previsto. Se le ipotesi/previsioni non combaciano con le conclusioni sperimentali, si ritorna a rivedere le ipotesi e a re-iterare il procedimento. Se invece l'esperimento "riesce" - ad esempio, concorda con le ipotesi - , allora le sue modalità vengono pubblicate, in modo che gli altri (in teoria) possano riprodurre gli stessi risultati sperimentali.
 
 
===Testing and improvement===
The scientific process is iterative. At any stage it is possible that some consideration will lead the scientist to repeat an earlier part of the process. Failure to develop an interesting hypothesis may lead a scientist to re-define the subject they are considering. Failure of a hypothesis to produce interesting and testable predictions may lead to reconsideration of the hypothesis or of the definition of the subject. Failure of the experiment to produce interesting results may lead the scientist to reconsidering the experimental method, the hypothesis or the definition of the subject.
 
===Verification===
Science is a social enterprise, and scientific work will become accepted by the community only if they can be verified. Crucially, experimental and theoretical results must be reproduced by others within the science community. Researchers have given their lives for this vision; [[w:Georg Wilhelm Richmann|Georg Wilhelm Richmann]] was killed by [[w:ball lightning|ball lightning]] to his forehead ([[w:1753|1753]]) when attempting to replicate the [[w:1752|1752]] [[w:kite|kite]] [[w:experiment|experiment]] of [[w:Benjamin Franklin|Benjamin Franklin]].
 
====Reevaluation====
''All'' scientific knowledge is in a state of flux, for at any time new evidence could be presented that contradicts a long-held hypothesis. A particularly luminous example is the theory of [[w:light|light]]. Light had long been supposed to be made of particles. [[w:Isaac Newton|Isaac Newton]], and before him many of the Classical Greeks, was convinced it was so, but his light-is-particles account was overturned by evidence in favor of a [[w:wave theory of light|wave theory of light]] suggested most notably in the early 1800s by [[w:Thomas Young (scientist)|Thomas Young]], an English physician. Light as waves neatly explained the observed diffraction and interference of light when, to the contrary, the light-as-a-particle theory did not. The wave interpretation of light was widely held to be unassailably correct for most of the 19th century. Around the turn of the century, however, observations were made that a wave theory of light could not explain. This new set of observations could be accounted for by [[w:Max Planck|Max Planck]]'s quantum theory (including the [[w:photoelectric effect|photoelectric effect]] and [[w:Brownian motion|Brownian motion]]&mdash;both from [[w:Albert Einstein]]), but not by a wave theory of light. Nor, for that matter, by the particle theory. [[w:Theory of Everything|More ...]]
 
===Peer review evaluation===
Scientific journals use a process of ''[[w:peer review|peer review]]'', in which scientists' manuscripts are submitted by editors of scientific journals to (usually one to three) fellow (usually anonymous) scientists familiar with the field for evaluation. The referees may or may not recommend publication, publication with suggested modifications, or, sometimes, publication in another journal. This serves to keep the scientific literature free of unscientific or crackpot work, helps to cut down on obvious errors, and generally otherwise improve the quality of the scientific literature. Work announced in the popular press before going through this process is generally frowned upon. Sometimes peer review inhibits the circulation of unorthodox work, and at other times may be too permissive. The peer review process is not always successful, but has been very widely adopted by the scientific community.
 
===Reproducibility===
The reproducibility or replication of scientific observations, while usually described as being very important in a scientific method, is actually seldom actually reported, and is in reality often not done. Referees and editors rightfully and generally reject papers purporting only to reproduce some observations as being unoriginal and not containing anything new. Occasionally reports of a failure to reproduce results are published--mostly in cases where controversy exists or a suspicion of fraud develops. The threat of failure to replicate by others, however, serves as a very effective deterrent for most scientists, who will usually replicate their own data several times before attempting to publish.
 
===Evidence and assumptions===
Evidence comes in different forms and quality, mostly due to underlying assumptions. An underlying assumption that 'objects heavier than air fall to the ground when dropped' is not likely to incite much disagreement. An underlying assumption like 'aliens abduct humans' however is an extraordinary claim which requires solid proof. Many extraordinary claims also do not survive [[w:Occam's razor|Occam's razor]].
 
===Elegance of hypothesis===
In evaluating a hypothesis, scientists tend to look for theories that are "[[w:elegant|elegant]]" or "[[w:beautiful|beautiful]]". In contrast to the usual English use of these terms, scientists have more specific meanings in mind. "Elegance" (or "beauty") refers to the ability of a theory to neatly explain as many of the known facts as possible, as simply as possible, or at least in a manner consistent with [[w:Occam's Razor|Occam's Razor]] while at the same time being aesthetically pleasing.
 
 
Everyone has reason to learn what constitutes a scientific proof. Even if you never do scientific work, it will help you to evaluate other's work, and to protect yourself against quackery. Maybe even more importantly, it will enable you to think more clearly in general.