L'ultimo teorema di Fermat/Appendice: differenze tra le versioni

Nessun cambiamento nella dimensione ,  15 anni fa
mNessun oggetto della modifica
[[Immagine:Pythagorean proof.png|centre]]
 
La dimostrazione è molto semplice, come si vede dal grafico si costruisce un primo quadrato formato da quattro triangoli e da due quadrati, uno di lato '''a''' e il secondo di lato '''b'''. L'area di un quadrato si calcola moltiplicando il lato per se stesso o con notazione moderna l'area è il lato elevato al quadtatoquadrato. L'area del quadrato grande è quindi la somma delle aree dei quadrati che valgono a<sup>2</sup> e b<sup>2</sup> più la somma dei quattro triangoli. Nel secondo quadrato abbiamo nuovamente quattro triangoli e un quadrato di area c<sup>2</sup>. Essendo i quattro triangoli presenti sia a destra dell'uguaglianza che a sinistra dell'uguaglianza si possono eliminare. Quindi nell'equazione rimane:
 
<center>a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup></center>
Utente anonimo