Forze armate mondiali dal secondo dopoguerra al XXI secolo/Panavia Tornado: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Corretto: "area"
Gian BOT (discussione | contributi)
m Bot: Correggo errori comuni (tramite La lista degli errori comuni V 1.0)
Riga 41:
I motori sono accessibili ventralmente (offrendo il dorso della fusoliera per protezione ai sistemi e al personale, dal sole come dalla pioggia) con un grosso portello per ciascuno, e sono stati pensati per essere sostituiti in poche ore di lavoro con connettori rapidi, sono di concezione modulare (molto importante per i successivi aggiornamenti) e pesano molto meno di mezzi della generazione precedente, come il J-79, nonostante abbiano anche un inversore di spinta. Sono quindi sistemi veramente eccezionali per tante ragioni. Anzitutto le dimensioni, importanti per ottenere anche un aereo molto compatto. Interessante ricordare come il motore fosse pronto ben prima dell'aereo, e come venisse sperimentato a bordo di un Vulcan, che sotto un'ala ebbe una 'navicella' rappresentativa della parte posteriore della fusoliera di un Tornado. L'aereo, già usato come testbed per il R.R. Olympus, volò già nel 1972. Questo aiuta a confermare l'origine essenzialmente britannica del motore, come del resto è inevitabile, data l'esperienza della R.Royce in turbogetti avanzati e poi nei turbofan. Si pensi al Rolls-Royce Spey, motore già estremamente compatto e parco nei consumi, che ebbe un successo anche oltreoceano quando andò al posto dell'Allison sui nuovi A-7D ed E Corsair II.
[[File:Rolls Royce RB.199 2.jpg|300px|right|thumb|Notare gli inversori di spinta vicino allo scarico]]
Avere dei modellini di aerei aiuta a capire l'importanza dei motori. Così come è facile rilevare quanto diverse e più piccole siano le ali del Tornado rispetto a quelle del Tomcat, così si può verificare quanto l'aereo europeo sia più piccolo degli equivalenti russi e americani nei sistemi di propulsione, dagli ugelli di scarico alle prese d'aria (dato che i motori di per non sono particolarmente grandi e potenti). Si pensi che il motore J35 del '51 aveva 3.400 kgs, lunghezza 4,96 m, peso a secco 1.293 kg, mentre l'SFC (consumo specifico) era di 2. Il J79-17 del '65 arrivava a 8.080 kgs, pur migliorando leggermente il consumo a 1,97 (kg di carburante per kg di spinta per ora di funzionamento). La lunghezza era di 5,3 m e il peso di 1.745 kg. L'RB-199 del '75 era dichiarato come avente, in questa sua prima versione, una lunghezza di 3,23 metri, e un peso di 898 kg. Si parlava anche di una spinta di 7.256 kgs e di un consumo specifico eccezionalmente basso, 1,5<ref>Gunston e Spick, op. cit</ref>.
 
Sebbene già il rapporto potenza-peso sia tra i migliori della sua generazione, se non il migliore, quello che si cercava maggiormente era l'obiettivo della compattezza e ancora di più, di un consumo minimo<ref>dati da Coniglio, Sergio, RID ago 1994</ref>. Per questo si è adottato un layout particolare: si tratta infatti di un turbogetto trialbero e ad alto rapporto di diluizione. Esso è talmente alto da raggiungere il valore di quasi 1:1, per cui metà dell'aria passa fuori dalla sezione 'calda' del motore. La configurazione è stata studiata dalla R.R. negli anni '70 ed è costituita dalla ventola/compressore AP a tre stadi, compressore a pressione intermedia tristadio, compressore AP a sei stadi, camera di combustione (anulare, a 13 tubi di fiamma) e turbine. In tutto ben 16 stadi, ma molto efficienti e tutto sommato semplici, con curve di consumo specifico molto piatte e stabili in condizioni anche molto diverse. L'Mk.105 è pesante a vuoto 981 kg, con dimensioni di 900 mm (stimato) di diametro e 3,3 m di lunghezza, diluizione di 0,97:1, rapporto pressione totale di 23,4:1. Il consumo specifico, in crociera, senza AB, è di 0,65. Il postbruciatore funziona separatamente per i flussi primario e secondario. Nel caso del Tornado ADV, per ovviare alle diverse caratteristiche, il condotto di scarico è aumentato di 360 mm. L'ugello è di tipo convergente con martinetti azionati dall'aria proveniente dal compressore AP.