Fisica classica/Energia e lavoro: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
aggiunta intestazione
m corrette piccole imperfezioni
Riga 29:
Nel caso più generale consideriamo una forza risultante, <math>\vec F\ </math>, che agendo su un punto materiale ne provochi uno spostamento <math>d\vec s\ </math>, il [[w:Prodotto_scalare|prodotto scalare]]:
{{Equazione|eq=<math>dW=\vec F \cdot d\vec s=F \cos \alpha ds= F_T ds</math>|id=1}}
viene definito lavoro infinitesimo delle forza risultante. Avendo indicato con <math>\alpha\ </math> l'angolo tra la forza e lo spostamento e con <math>F_T\ </math> la componente tangenziale della forza lungo la traiettoria. I casi in cui il lavoro è nullo sono quelli nei quali o non agisce nessuna forza o non si ha spostamento oppure la risultante delle forze è perpendicolare alla traiettoria, così che <math>\cos \alpha = 0 \,\!</math>. Se invece vi è una componente della forza nella direzione dello spostamento, il lavoro fatto è diverso da zero. Il lavoro è positivo, se è nella stessa direzione dello spostamento, mentre è negativo se è in direzione opposta. Il lavoro positivo viene chiamato lavoro motore (in quanto aumenta la velocità dell'oggetto su cui si applica), mentre il lavoro negativo viene chiamato lavoro resistente, (in quanto rallenta la velocità del punto materiale). Quindi ad esempio la forza di gravità fa un lavoro motore se agisce su un corpo in caduta, mentrmentre fa un lavoro resistente se agisce su un corpo in salita.
Nel caso più generale di un punto materiale che si muove su di una traiettoria curvilinea, il lavoro è dato dall'integrale di linea del lavoro infinitesimale e quindi se il punto si sposta dal punto A al punto B possiamo scrivere:
{{Equazione|eq=<math>W=\int_A^B \vec F \cdot d\vec s</math>|id=2}}
Riga 37:
La potenza istantanea corrisponde al lavoro per unità di tempo:
{{Equazione|eq=<math>P=\frac{dW}{dt}=\vec F \cdot \frac {d\vec s}{dt}=\vec F \cdot \vec v=F_T v</math>|id=3}}
Si ipotizza, come è naturale, che nel tempo infinitesimo dt non cambia la forza, ma eventualmente il punto materiale si sposta, quindi essendo la derivata dello spostamento niente altro che la velocità, che è diretta seconda la direzione orizzontale, l'unica componente della forza che intervienedetermina lavoro scambiato è la componente tangenziale.
 
La potenza è una misura di quanto velocemente viene erogato il lavoro. Tale grandezza serve a quantificare le prestazioni delle forze sia nel lavoro umano o animale che nelle macchine. La potenza ha le dimensioni di una energia diviso un tempo. La sua unità di misura è il watt che ha come simbolo '''W'''. Il concetto di potenza è ben noto dagli albori della civiltà e veniva quantizzato dalla potenza dei cavalli da cui deriva l'unità di misura ora obsoleta il [[w:Cavallo_vapore|cavallo vapore]] (simbolo hp) che corrisponde a 735 W.
Riga 90:
Ritornando alla equazione esplicita si ha che:
:<math>v_f=\sqrt{2g(h_o-h_f)+v_o^2}</math>
Tale equazione viene scritta senza interessarsi della cinematica dell'oggetto, nell'ipotesi che la sola forza agente che compie lavoro meccanico sia la forza di gravità. Nel seguito, invece dell'altezza h, spesso la quota da terra verrà indicata con z.
 
Alcuni esercizi, uno su un oggetto [[Esercizi_di_fisica_con_soluzioni/Energia_meccanica#1._Pigna|lanciato in aria]],
Riga 117:
:<math>W=\int_o^f \vec F \cdot d\vec s=-\mu_d N \int_o^f d\vec s=-\mu_d N \ell</math>
dove <math>\ell</math> è il cammino totale percorso che non dipende solo dalla posizione iniziale e finale, ma dalla lunghezza del percorso seguito. A differenza dei casi precedenti la posizione finale ed iniziale non bastano per caratterizzare il lavoro svolto, anzi per stesse posizioni iniziali e finali il lavoro, sempre negativo, può assumere valori molto diversi.
In questo caso l'energia meccanica non si conserva in quanto via via che viene percorsa la traiettoria l'energia cinetica diminiusce senza aumentare una qualche forma di energia potenziale. In realtà l'energia meccanica viene trasformata in calore che è un'altra forma di energia (non meccanica). Quindi il punto materiale ha una energia cinetica iniziale e, via via, la perde per attrito, fino a fermarsi.
 
Il teorema del lavoro diviene in questo caso: