Differenze tra le versioni di "Probabilità/Introduzione"

Le probabilità fisiche, che sono anche chiamate probabilità oggettive o di frequenza, sono associate a sistemi fisici casuali come la roulette, i dadi e gli atomi radioattivi. In tali sistemi, un determinato tipo di evento (come l'uscita di un sei nei dadi) tende a verificarsi con una percentuale continua o a 'frequenza relativa', in un lungo periodo di prove. Le probabilità fisiche spiegano, o sono chiamate a spiegare, queste frequenze stabili. Così parlare di probabilità fisica ha senso solo quando si tratta di esperimenti casuali ben definiti. I due tipi principali di teoria della probabilità fisica sono i conti di frequentista (come Venn) e i conti di propensione.
 
Le frequenze relative sono sempre comprese tra 0% (caso che non accade mai) e il 100% (caso che accade sempre), quindi in questa teoria le probabilità sono compresi tra 0% e 100%. Secondo la teoria di frequenza di probabilità, cosa significa dire "la probabilità che A si verifica è p%" è che se si ripete l'esperimento più e più volte, in modo indipendente e in condizioni sostanzialmente identiche, la percentuale del tempo che A si verifica tenderà a p. Ad esempio, nell'ambito della teoria della frequenza, dire che la probabilità che in una moneta esca testa è del 50% , significa che se si lancia la moneta più e più volte, in modo indipendente, il rapporto tra il numero di volte che esce testa e il numero totale di lanci si avvicina a un valore (limite) del 50% e cresce dal numero di lanci. Poiché il rapporto di lanci con risultato testa è sempre compresa tra 0% e 100%, quando esiste la probabilità che deve essere compreso tra 0% e 100%.
Relative frequencies are always between 0% (the event essentially never happens) and 100% (the event essentially always happens), so in this theory as well, probabilities are between 0% and 100%. According to the Frequency Theory of Probability, what it means to say that "the probability that A occurs is p%" is that if you repeat the experiment over and over again, independently and under essentially identical conditions, the percentage of the time that A occurs will converge to p. For example, under the Frequency Theory, to say that the chance that a coin lands heads is 50% means that if you toss the coin over and over again, independently, the ratio of the number of times the coin lands heads to the total number of tosses approaches a limiting value of 50% as the number of tosses grows. Because the ratio of heads to tosses is always between 0% and 100%, when the probability exists it must be between 0% and 100%.
 
Nella teoria soggettiva della probabilità, la probabilità misura il "grado di convinzione" di chi parla sul verificarsi di un evento, su una scala da 0% (incredulità completa che l'evento accadrà) al 100% (certezza che l'evento accadrà). Secondo la teoria soggettiva, che cosa significa per me dire che "la probabilità che A si verifica è 2/3" è che credo che A accadrà due volte più forte come credo che A non accadrà. La teoria soggettiva è particolarmente utile in senso assegnare alla probabilità di eventi che in linea di principio possono verificarsi solo una volta. Ad esempio, come si potrebbe assegnare significato di una dichiarazione come "c'è una probabilità del 25% di un terremoto sulla faglia di San Andreas, con magnitudo 8 o superiore prima del 2050?" (Per ulteriori discussione delle teorie della probabilità e la loro applicazione a terremoti Vedere Freedman e Stark, 2003). È molto difficile da usare la teoria della Outcomes stessa probabilità o la Teoria frequenza di dare un senso l'affermazione.
In the Subjective Theory of Probability, probability measures the speaker's "degree of belief" that the event will occur, on a scale of 0% (complete disbelief that the event will happen) to 100% (certainty that the event will happen). According to the Subjective Theory, what it means for me to say that "the probability that A occurs is 2/3" is that I believe that A will happen twice as strongly as I believe that A will not happen. The Subjective Theory is particularly useful in assigning meaning to the probability of events that in principle can occur only once. For example, how might one assign meaning to a statement like "there is a 25% chance of an earthquake on the San Andreas fault with magnitude 8 or larger before 2050?" (See Freedman and Stark, 2003, for more discussion of theories of probability and their application to earthquakes.) It is very hard to use either the Theory of Equally Likely Outcomes or the Frequency Theory to make sense of the assertion.
 
Bayesians, however, assign probabilities to any statement whatsoever, even when no random process is involved. Probability, for a Bayesian, is a way to represent an individual's degree of belief in a statement, given the evidence.
8

contributi