Probabilità/Calcolo combinatorio: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Riga 177:
in tre sottoinsiemi di tre dimensioni, vale a dire 9!/[3!3!3!] = 1680.
 
In queasta analisi,noi assumiamo che la dimensione di ciascun sottoinsieme è fisso, tre sottoinsiemi di tre dimensioni.Supponiamo invece che noi siamo interessati a contare il numero di modi di scegliere le dimensioni dei sottoinsiemi, sottoinsiemi r di n1, n2, ..., nr dimensioni, dove la somma delle dimensioni è una costante.In particolare, noi vogliamo calcolare il numero di modi interi n1, n2, ..., n può essere selezionata
9!
tale che ogni numero intero non è negativo e
3!3!3! = 1680.
In the above analysis, we assume that the size of each subset is fixed, three subsets of size
three. Suppose instead that we are interested in counting the number of ways of picking the
sizes of the subsets, r subsets of n1,n2,...,nr size, where the sum of the sizes is a constant.
Specifically, we wish to compute the number of ways integers n1,n2,...,nr can be selected
such that every integer is nonnegative and
Pr
p=1 np = n.
 
We can visualize the number of possible assignments as follows. Picture n balls spaced out
Noi possiamo visualizzare il numero delle possibili assegnazioni come segue. Le Foto delle n palle intervallate
on a straight line and consider r-1 vertical markers, each of which can be put between two
su una linea retta e considerare r-1 marker verticali, ciascuna delle quali può essere messa tra due
consecutive balls, before the first ball, or after the last ball. For instance, if there are five
palle consecutive, prima della prima palla, o dopo l'ultima palla. Ad esempio, se ci sono cinque
balls and two markers then one possible assignement is illustrated below.
palle e due marcatori quindi una possibile assegnazione è illustrato di seguito.
 
--!>
Figure 14
The number of objects in the first subset corresponds to the number balls before the first
marker. Similarly, the number of objects in the p-th subset is equal to the number of balls
between the p-th marker and the preceding one. Finally, the number of objects in the
last subset is simply the number of balls after the last marker. In the figure, the integer
assignment is
(n1,n2,n3) = (0,2,3).
Figure 15
Two consecutive markers imply that the corresponding subset is empty. There is a natural
bijection between an integer assignment and the graphical representation depicted above.
WeTo can visualizecount the number of possible integer assignments, asit follows.then Picturesuffices nto ballscompute spacedthe outnumber
of ways to position the markers and the balls. In particular, there are n + r - 1 positions, n
balls, and r - 1 markers. The number of ways to assign the markers is equal to the number
of n-combinations of n + r - 1 elements,
(n+r−1)!
n!(r−1)! .
36Computing Probabilities
Example - Sampling with Replacement, without Ordering: An urn contains r balls
numbered one through r. A ball is drawn from the urn and its number is recorded. The ball
is then returned to the urn. This procedure is repeated a total of n times. The outcome of
this experiment is a table that contains the number of times each ball has come in sight. We
are interested in computing the number of distinct outcomes. This is equivalent to counting
the ways a set with n elements can be partitioned into r subsets. The number of possible
outcomes is therefore given by
(n+r−1)!
n!(r−1)! .
 
--!<
 
== Probabilità di calcolo ==