L'ultimo teorema di Fermat/Appendice: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Hellisp (discussione | contributi)
Nessun oggetto della modifica
Riga 19:
Il Teorema fondamentale dell'aritmetica afferma che ogni numero naturale che non sia 1 ammette una ed una sola fattorizzazione in numeri primi pur di non tener conto dell'ordine dei fattori. (L'esclusione di 1 è dovuta al fatto che esso non ha fattori primi.) Questo teorema era alla base delle dimostrazioni di Gabriel Lamé e Augustin Luis Cauchy e come si è detto in generale non vale nei numeri complessi quindi non può essere utilizzato per il teorema di Fermat ma data la sua importanza si è deciso di includere comunque la dimostrazioni nell'appendice.
 
L'enunciato è facilmente verificabile per numeri naturali "piccoli": è facile scoprire che 70 è pari a 2*5*7 mentre 100 equivale a 2*2*5*5 ovvero 222<sup>2</sup>*525<sup>2</sup>, ed è altrettanto facile verificare che per questi numeri non possono esistere altre scomposizioni in fattori primi. Viceversa la dimostrazione generale è piuttosto lunga: eccone una traccia. Si tratta di una dimostrazione per assurdo: si parte cioè dall'ipotesi contraria a quella dell'enunciato per poterne dimostrare l'infondatezza.
 
Si supponga che esistano dei numeri scomponibili in fattori primi in più di un modo, e si chiami ''m'' il più piccolo. Innanzitutto si dimostra che, date due fattorizzazioni di ''m'', i numeri primi che si presentano nella prima fattorizzazione sono tutti distinti da quelli della seconda fattorizzazione. Siano infatti due diverse fattorizzazioni: