Differenze tra le versioni di "Fisica classica/Potenziale elettrico"

m
piccoli aggiustamenti
m (→‎Il dipolo elettrico: un q di troppo)
m (piccoli aggiustamenti)
\int_a^b \vec E\cdot d\vec l\ </math>
 
non dipende dal percorso seguito, ma solo dagli estremi di integrazione. Questa è una conseguenza del fatto che la forza elettrica è [[w:Forza_centrale|centrale]]e a simmetria sferica. Quindi, analogamente all'energia potenziale, possiamo definire la '''differenza di potenziale elettrico''' (''d.d.p'') <math>V_b-V_a\ </math> presente tra i punti a e b:
 
<math>
 
==Unità di misura ed ordini di grandezza==
Le dimensioni fisiche del potenziale elettrico sono quelle del rapporto tra una energia e launa carica elettrica,. quindi lL'unita di misura nel [[w:Sistema_internazionale_di_unit%C3%A0_di_misura|Sistema Internazionale]] è detta [[w:Volt|Volt]] ed equivale a [[w:Joule|Joule]] diviso [[w:Coulomb|Coulomb]], indicato con il simbolo
 
<math>[V]=\frac {[Energia]}{[Carica]}=\frac {[J]}{[C]}\ </math>
<math>[E]=\frac {[Forza]}{[Carica]}=\frac {[V]}{[m]}\ </math>
 
I campi elettrici sono estremamente difficili da misurare in quanto la presenza di materia li modifica sostanzialmente, anche se finora la trattazione fatta escludeva la presenza di materia. Campi elettrici dell'ordine di qualche <math>10^6\ V/m\ </math> nell'aria sono considerati campi molto intensi. Infatti con campi di questo ordine di grandezza l'aria cessa di essere un mezzo simile al vuoto e si comporta come un [[w:Plasma_%28fisica%29|plasma]]. I fulmini, l'effetto più appariscente dell'elettromagnetismo fin dagli albori della civiltà umana, sono una tipica manifestazione di tali campi intensi. Durante una giornata serena vi è naturalmente un campo elettrico la cui intensità al livello del mare è di circa un centinaio di V/m. Quindi un campo di questo ordine di grandezza presente naturalmente è considerato un campo elettrico di piccola intensità.
 
Il potenziale elettrico è invece una grandezza che è entrata nell'uso comune, differenze di potenziale tra oggetti carichi isolati sono facilmente misurabili, tra frazioni di Volt a centinaia di Volt. Differenze di potenziali statiche di qualche nV sono estremamente difficili da misurare, mentre differenze di potenziale di molte centinaia di Volt possono essere estremamente pericolose per la salute umana se applicate tra due differenti parti del corpo umano: in realtà la pericolosità è legata alla corrente, di cui parleremo nel seguito.
\sum_{i=1}^n\frac{Q_i}{|\vec r- \vec {r_{i}}|}\ </math>
 
Essendo <math>V\ </math> una funzione scalare, il calcolo del potenziale è molto più semplice da effettuare del campo elettrico.
 
=== Caso continuo===
ConI ovvieragionamenti estensionifatti si estendono al caso continuo, in particolare nel caso di distribuzione di cariche su una linea con densità lineare <math>\lambda\ </math>: l'espressione del potenziale del punto posto nella posizione identificata da <math>\vec r\ </math> (assunto
nullo il potenziale all'infinito) vale:
 
<math>
V(\overrightarrow{r})=
Dove <math>\overrightarrow{r_l}\ </math> è il vettore posizione del generico elementino <math>dl\ </math>.
 
Con ragionamentiragionamento analoghianalogo nel caso per distribuzione superficiale: caratterizzata dalla
densità superficiale <math>\sigma\ </math>:
 
<math>V
\frac{ \sigma ds}{|\vec r-\vec {r_s}|}\ </math>
 
einfine per una distribuzione volumetrica:
 
<math>V
<math>dV=-E_xdx-E_ydy-E_zdz\ </math>
 
Ma d'altro canto, secondo la definizione di differenziale, vale la relazione:
 
<math>dV=\frac {\partial V}{\partial x}dx+\frac {\partial V}{\partial y}dy+\frac {\partial V}{\partial z}dz\ </math>
[[Immagine:Dipolo_en_campo_electrico_uniforme.png|thumb|350px|right|Forze agenti su un dipolo da parte di un campo elettrico uniforme]]
=== Azione dei campi elettrici sui dipoli elettrici===
DatoSe si ha un dipolo elettrico rigido posto in un campo elettrico esterno comese tuttivogliama icaipre sistemila rigididinamica bisogna consideracalcolare la forza risultante ed il momento risultante. Se il campo elettrico è uniforme la risultante delle forze è chiaramente nulla in quanto la forza agente sulla carica positiva è esattamente eguale e contraria a quella agente sulla negativa. BenMentre diversoper èquanto riguarda il casomomento delin momentogenere infattiè sediverso da 0. Se il dipolo ha una angolo <math>\theta\ </math> con la direzione del campo, sul sistema agirà una coppia di forze, data da due volte la forza per il braccio:
 
<math>|\tau| = 2|F|(a \sin \theta ) = 2a|F|\sin \theta \,\!</math>
Per questa ragione un dipolo elettrico immerso in un campo esterno uniforme <math>\scriptstyle \vec E\ </math>, è soggetto a un momento che tende ad allinearlo alla direzione del campo:
 
<math>\boldsymbolvec {\tau}=\vec p \times \vec E</math>
 
Si deve fare un lavoro (positivo o negativo) mediante una azione esterna per cambiare la direzione relativa del dipolo rispetto al campo esterno. Essendo il campo elettrico conservativo, posso associare a tale lavoro una energia potenziale U.
 
Se il campo elettrico non è uniforme la dinamica è chiaramente più compilcata in quanto la risulatante delle forze non è più nulla a meno che il dipolo sia orientato nella direzione in cui il campo elettrico non varia. Ma chiaramente questa non è una situazione di equilibrio in quanto
il momento sarà massimo in tale posizione e farà ruotare il dipolo allineandolo alle linee del campo. In generale la dinamica è molto complicata. Si semplifica il comportamento dinamico se si assume che l'allineamento del dipolo con le linee del campo (dovuto al momento delle forze) avviene più rapidamente rispetto al moto di trascinamento (dovuto alla variazione spaziale del campo elettrico). ViIn questo caso vi sarà un moto di trascinamento, in quanto se viene assunto come asse delle <math>x\ </math> la direzione locale del campo elettrico su cui si allineato il dipolo e viene scelta l'origine sul centro del dipolo, la posizione della carica negativa sarà <math>-a\ </math>
delle <math>x\ </math> la direzione locale del campo elettrico su cui si allineato il dipolo.
Assunta l'origine sul centro del dipolo, la posizione della carica negativa sarà <math>-a\ </math>
e quella della positiva <math>a\ </math>.
La risultante della forza sarà quindi:
<math>F_x\approx 2qa\frac {\partial E_x}{\partial x}|_{x=0}=p\frac {\partial E_x}{\partial x}\ </math>
 
Cioè i dipolo sono trascinati nella regione dove più intenso è il campo elettrico. Tale forza di trascinamento viene utilizzata nelle fotocopiatrimacchine perfotocopiatrici dove intensi campi elettrici trascinano trascinare il toner (dipoli) sulla carta.
 
== Energia potenziale elettrica==
 
 
dove il termine 1/2 è stato introdotto per eliminare le coppie considerateche sarebbero state contate due volte considerate, unase voltavengono scambiati ''i'' e ''j''.
 
Separando le due [[w:Serie|sommatorie]] si ha che: