Utente:Pasquale.Carelli/Sandbox2: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 277:
Dove <math>V_r\ </math> è la differenza di potenziale tra la superficie della sfera e l'infinito quando il suo raggio vale <math>r\ </math>:
 
<math>V_r=\frac {\rho \frac 43 \pi r^3}{4\pi \epsilon_ovarepsilon_o r}=\frac {\rho r^2}{3 \epsilon_o }\ </math>
 
Esplicitando l'eq. 2:
 
<math>dU=\frac {\rho^2 4\pi r^4 dr}{3 \epsilon_ovarepsilon_o}</math>
 
Quindi integrando l'ultima espressione tra 0 ed R si ha:
 
<math>U=\int_0^R \frac {\rho^2 4\pi r^4 dr}{3 \epsilon_ovarepsilon_o}
=\frac {\rho^2 4\pi R^5}{15 \epsilon_ovarepsilon_o}=\frac {3Q^2}{20\pi \epsilon_ovarepsilon_o R} \ </math>
 
===Energia associata al campo elettrostatico===
 
Consideriamo una distribuzione finita di carica, nel volume <math>T\ </math> che genera quindi nello spazio un campo elettrico a cui posso associare un potenziale elettrico. L'energia elettrostatica totale del sistema vale (formula precedente):
 
<math>U= \int_\tauint_T \frac{1}{2} \rho V \operatorname{d}\tau</math>
 
Applicando teorema di [[Fisica_classica/Legge_di_Gauss#Il teorema di Gauss in forma differenziale|Gauss in forma differenziale]]
 
<math>U= \int_\tauint_T \frac{1}{2} \epsilon_0varepsilon_o \left( \vec \nabla \mathbf{cdot \vec E}_0\right) V \operatorname{d}\tau\ </math>
 
Poichè:
E' facile mostrate che:
 
<math> \vec \nabla \cdot \left( \vec EV \right)=\left( \vec \nabla \cdot \vec E \right) V+
\vec E \cdot \vec \nabla V\ </math>
 
da cui:
 
<math>\left( \vec \nabla \cdot \vec E\right) V=\vec \nabla \cdot \left( \vec EV \right)-
\vec E \cdot \vec \nabla V\ </math>
 
quindi:
 
<math> U= \int_T \frac{1}{2} \varepsilon_o\left[ \vec \nabla \cdot \left( \vec EV \right)-\vec E \cdot \vec \nabla V\right]\operatorname{d}\tau \ </math>
 
Usando la formula inversa dal potenziale elettrico al campo:
 
<math> U= \frac 12 \varepsilon_o \int_T \vec \nabla \cdot \left( \vec EV \right)\operatorname{d}\tau+\frac{1}{2} \varepsilon_o \int_T E^2\operatorname{d}\tau \ </math>
 
Estendendo l'integrale a tutto lo spazio, quindi una sfera di raggio infinito, il primo termine per il [[w:Teorema_della_divergenza|teorema della divergenza]] diventa il flusso del prodotto del campo elettrico che va con <math>1/R^2\ </math> e del potenziale <math>V\ </math> come <math>1/R\ </math> (Entrambi decrescono più velocemente se la carica netta è nulla). Poichè l'integrale superficiate di una sfera va come <math>R^2\ </math> si ha che il primo termine si annulla, quindi rimane solo il secondo termine:
 
<math> U= \frac{1}{2} \varepsilon_o \int_{Spazio} E^2\operatorname{d}\tau \ </math>
 
Quindi <math> \frac{1}{2} \varepsilon_o E^2\ </math> è l'energia per unità di volume del campo elettrostatico.