Forze armate mondiali dal secondo dopoguerra al XXI secolo/Regno Unito-2: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 321:
 
===L'HMS Spartan===
 
I sottomarini britannici, dagli anni '60 erano suddivisi in tre grandi categorie: SSN, SSK, e SSBN. FInita la Guerra fredda, scomparsa la minaccia sovietica, vi sono state pesanti riduzioni nella linea della flotta. I primi a pagare, pur essendo i più economici, sono stati gli SSK; gli 'Upholder' erano mezzi validi, da 2.400 t, con capacità oceaniche. Come sostituito dei vecchi ma efficienti 'Oberon', si prevedeva un totale di nove unità: i primi quattro entrarono in servizio nel 1990-93, ma presto vennero messi in riserva e gli altri mai realizzati, tanto che la Gran Bretagna ha lasciato (così come anche gli olandesi, ma questa è una cosa più comprensibile data la minore importanza dei loro cantieri) il settore degli SSK, tutt'altro che 'finito' dopo il 1991, alle mani di tedeschi e francesi. Questo taglio ha comportato la fine delle capacità cantieristiche inglesi nel settore convenzionale, seguendo quello che anni prima fecero gli americani. E' una dura perdita, ma è un fatto che tutte le Marine che sono riuscite a dotarsi di sottomarini nucleari, hanno preferito perdere o ridurre la componente convenzionale piuttosto che intaccare gli SSN e tanto più, gli SSBN. Nel 1990 erano in servizio ben 18 SSN, dei quali 5 'Valiant', 6 'Swiftsure' e 7 'Trafalgar'; nel 1993 si pensava di costruire la nuova classe di SSN tipo 'W', altri sette battelli per sostituire i vecchi 'Valiant'. Invece, le cose sono andate diversamente, tutto sommato per fortuna visto che questo ha significato la fine della Guerra fredda. 4 'Valiant' sono stati messi in disarmo, e poi è stata la volta del capoclasse 'Swiftsure', che pure aveva solo una ventina d'anni. Date le esigenze di contenimento dei costi, è stato rinunciato a sviluppare un progetto interamente nuovo, mentre ci si è accontentati di un battello che fosse lo sviluppo dei 'Trafalgar', ma con il nuovo reattore PWR-2. Nel frattempo la linea dei battelli scendeva a 13 unità, e poi a dodici allorché uscì di scena l'ultimo dei 'Valiant'.
 
Line 327 ⟶ 326:
 
Questa diminuzione è senz'altro significativa, ma è accompagnata da un miglioramento qualitativo, come l'introduzione dei missili BGM-109 e (finalmente) i siluri Spearfish. Nel frattempo il programma TWS (Tactical Weapon System Upgrade) avrebbe migliorato il sistema di combattimento, che negli 'S' e nei 'T' era rispettivamente l'Outfit DCB e Outfit DSG, entrambi sostituiti dal BAeSEMA SMCS, che significa Submarine Command System, con una nuova architettura distribuita e aperta. Nel frattempo alcuni SSN avrebber oavuto l'aggiornamento al DCB, modificato allo standard DCG per migliorare notevolmente l'automatizzazione delle operazioni.
 
 
Lo Spartan è stato costruito dalla VSEL (poi GEC-Marconi) di Barrow Furness, impostato nel 1976, varato il 7-4-78, e in servizio il 22 settembre 1979. Nel 1989, per far restare elevata la sua capacità di combattimento, venne sottoposto ad un lavoro importante di aggiornamento, che avrebbe comportato l'uso del battello per almeno un altro decennio. Esso è il quinto battello classe 'Swiftsure', che deriva dalla Valiant e che a sua volta, ha un apparato motore basato sulla tecnologia degli 'Sturgeon' americani, sebbene sia più veloce. La classe 'Swiftsure' era infatti la più veloce delle unità subacquee della RN al momento della sua entrata in servizio, e poteva anche andare a profondità superiori. Le forme dello scafo sono più curate e dalla sagoma più 'piena', il che permette di compensare la perdita del volume data da 4 metri di lunghezza in meno; nell'insieme si tratta di un tipo 'Albacore', ovvero con scafo a goccia allungata, che permette velocità maggiori con notevole riduzione della turbolenza. Il controllo è dato da timoni direzionali e di profondità poppieri; questi ultimi sono costituiti da uno stabilizzatore fisso con una superficie mobile abbinata; diversamente, il timone direzionale è interamente mobile, oltre che di grandi dimensioni, per permettere una maggiore controllabilità e velocità di reazione, specie alle velocità più alte. I due piani d'immersione sono a prua, retrattili dentro lo scafo un pò come nei tipi sovietici, e a differenza di quelli americani. Quanto al controllo d'assetto, esso è dato da casse di zavorra anteriori (scafo inferiore) e centrali (alle estremità dello scafo). La vela dei sottomarini britannici non ospita i timoni, perché questi, per quanto più efficienti in tale posizione, sono anche più vulnerabili ai danneggiamenti (specie quando si tratta di emergere tra i ghiacci, cosa tutt'altro che rara per i sottomarini britannici). Essa porta però una plancia piuttosto spaziosa, e una torre posteriore per la vedetta. Dentro la vela, naturalmente, sono presenti anche i vari alberi telescopici dei sensori, che per lo più sono ancora di tipo 'penetrante' lo scafo, cosa che ovviamente pone dei rischi, e che ha delle difficoltà insite nella realizzazione; ma fino all'era del 'digitale', non c'era altra scelta. Ci sono due periscopi, uno di scoperta e uno d'attacco, un albero con l'ESM della Racal, e uno, non penetrante, che non ha (come del resto nemmeno l'ESM) una necessità di via ottica, in quanto porta il radar di navigazione e ricerca navale. Dietro vi è un altro albero per i sistemi di comunicazione, affiancato da quello di intercettazione radio (Dasa Telegon 6), non sempre presente a bordo. Un pò tutti gli alberi hanno ricevuto materiali RAM per minimizzarne l'impronta radar, incluso il dielettrico per l'antenna ESM (che poi la traccia radar permanga, come si resero conto già i tedeschi nella II GM, a causa della struttura bagnata d'acqua di mare, è un altro discorso). Nella parte poteriore della vela è presente anche lo snorkel, ovviamente poco usato in un SSN, ma che serve in caso di necessità, quando c'é da azionare il generatore diesel d'emergenza.
Line 335 ⟶ 333:
====Nel ventre del leviatano====
L'HMS Spartan meritava senz'altro un incontro ravvicinato, così il direttore di RiD riuscì a fare un servizio, per una volta lontano dalla sua solita serie 'aeronautica'. Per una settimana fece l'esperienza di navigare in immersione con un battello della Royal Navy. Stretto nelle strutture del battello, come sempre angusto per l'equipaggio, fece la sua esperienza in una cabina tripla con due altri occupanti, ufficiali anziani. Infatti, solo il comandante aveva il lusso di una cabina singola, il secondo era già costretto a dividere con un altro ufficiale la propria 'cella'. In un camerino per tre ufficiali c'erano altrettanti letti sovrapposti, una minuscola scrivania, lavello e piccolo armadio. C'erano due bagni in comune per tutti gli uffiali, le docce erano due vicine alla piccola cucina. Ma l'equipaggio era di ben 14 ufficiali, 101 tra sottufficiali e comuni, ma si possono anche arrivare a contare 120 persone e passa. E il problema è anche che non vi sono alloggi sufficienti per questa ciurma: 98 posti letto, gli altri si devono accomodare a dormire sulle brande già usate, essenzialmente è una questione dei giovani marinai, specie quelli della camera di lancio, dove spesso si dormiva dove si poteva. Una vita difficile quella dei sommergibilisti, che per forza esterna, erano costretti a convivere come un tutt'uno in un mostro d'acciaio che viaggia sott'acqua anche per tre mesi, se necessario. E' più confortevole di una nave normale, dato che non risente del moto ondoso, per non parlare dell'umidità e del freddo. Se sopra, nell'oceano, c'é una tempesta, per quanto furiosa, il sottomarino atomico sta semplicemente a navigare in sicurezza, sott'acqua non ci sono questi problemi. Per un sottomarino normale, specie delle vecchie generazioni, che erano più propriamente note come 'sommergibili', è tutt'altra storia, specie per l'erogazione di energia e acqua distillata. Ma certo, lo spazio non abbonda, e se qualcuno può non resistere per il mal di mare, lassù in superficie, per chi soffre di claustrofobia un sottomarino è rigorosamente off-limits. Per giunta, la scomodità sarebbe stata perpetuata anche in futuro: i successivi SSN classe 'Astute' avrebbero avuto solo 100 persone a bordo, ma appena 82 cuccette. Stare a duecento metri sotto il livello del mare fa perdere la cognizione del tempo, e questo comporta che solo il cambio della guardia e della luminosità (da chiaro a rosso) per consentire di vivere a ritmi 'umani'. Di tempo per dormire ce n'é proprio poco, ma ci si abitua: il mare è scomodo, lo è sempre stato, ma per qualche ragione gli umani tendono a non farne a meno, a legarcisi, malgrado tutto. Nella parte anteriore del battello si lavora due turni al giorno, nella parte posteriore, dove c'é il motore, sono previsti tre turni o anche più. Anche quando non si lavora ci sono le immancabili scartoffie, e i documenti e libri vari per sostenere esami e le ispezioni, nonché per i concorsi. Per gli ufficiali 'senior' non c'erano più di 5-6 ore al giorno da dedicare al sonno, e forse i sottoposti ne hanno anche di meno. L'equipaggio è organizzato in più turni, e in tre dipartimenti o servizi: comando/rifornimeno (8 ufficiali tra cui il vice comandante); sistemi d'arma con due ufficiali e genio navale con 4, quest'ultimo per la gestione del sistema motore, per cui uno dei quattro ufficiali è sempre in servizio. I capi, sottocapi e ciurma sono grossomodo egualmente distribuiti tra i tre dipartimenti, e spesso ognuno ha più qualifiche per tenere sotto controllo un battello che non ha mai abbastanza uomini al suo interno. Se i sottomarini fossero unità di 'crociera', senza armi, senza esigenze eccessive di velocità e altre caratteristiche militari, sarebbe diverso, ma ogni unità subacquea è sempre e comunque molto costosa, e parimenti importante; quindi è un frutto di compromessi difficili, nei quali la cubatura interna è sacrificata, sopratutto perché lo scafo interno, più è grande e più è difficile da costruire nelle necessarie specifiche di resistenza e peso richiesti.
 
Naturalmente tutto nel battello è progettato per ridurre l'emissione sonora interna, con sospensioni ai macchinari con supporti elastici o 'zattere' comunque elastiche rispetto alla struttura rigida che era in origine adottata. Anche dentro lo scafo, e non solo fuori, c'é un pannello di materiali anecoici come ulteriore aiuto alla riduzione del rumore. Lo scafo è in acciaio ad alta resistenza, e permette di arrivare ad oltre 250 metri di profondità come normale, e ben oltre come massimo. Dato che la resistenza della struttura dipende ovviamente dalla presenza e dalle dimensioni di aperture nello scafo, per cui meno sono e meglio è: l'accesso allo scafo resistente è dato dal grande portello anteriore per la carica di siluri e missili dentro la sala, viveri, rifornimenti vari; due uscite d'emergenza, e quella d'accesso alla torretta. Lo scafo resistente è suddiviso in tre ponti e con ben 29 paratie principali; partendo dalla parte anteriore c'é nel primo ponte, la sala di controllo, quella sonar e gli alloggi ufficiali, nel secondo ponte vi sono anche quelli dei comuni e capi, e molta dell'elettronica del battello. Nel terzo ponte vi sono magazzini, 'bomb room' (che ha le armi), tubi di lancio, vari sistemi e apparati di navigazione e comunicazione e ESM. Nella parte posteriore vi sono le macchine, sistemi idraulici ed elettrici, sala controllo e officine. Il reattore è molto compatto e sistemato in una apposita sezione, lunga circa 10 metri e profonda due ponti. Non è un impegno di poco conto: per proteggere l'equipaggio dalle radiazioni, il 10% della stazza dell'SSN è dedicata a questa sezione, ovviamente anche per proteggere il reattore stesso da danni e avarie.
 
Dato che nel '58 GB e USA sottoscrissero accordi bilaterali per far sì che Londra avesse accesso alle tecnologie americane, la progettazione del sistema motore è derivata da tecnologie americane, il cui afflusso continuò fino al '62. Ma ancora trenta e oltre anni dopo il sistema motore degli 'Swiftsure' era ancora coperto da un certo riserbo. Si sa che era un R.R. PWR-1, basato sull'S5W americano, sigla che significa 'motore per sottomarini (S) di quinta generazione e prodotto dalla Westinghouse, capace di 15.000 hp erogati dalle due turbine GEC Alsthom, azionate dal vapore e che azionano l'albero con un riduttore connesso ad un giunto flessibile. Sebbene la sigla PWR-1 è uguale a quella dei precedenti SSN, in realtà si tratta di un tipo diverso rispetto ai 'Valiant'. Infatti il nocciolo (Core) non è il tipo A, ma il B, collaudato a terra nel 1972. Il successivo Core Z è stato messo a punto per i 'Trafalgar'. Ma essendo tutti 'noccioli' compatibili, è stato possibile, con lavori di refitting, metterli anche nei precedenti sottomarini nucleari, per esempio il Core B è andato anche ai 'Valiant' e 'Resolution', e gli 'Swiftsure' hanno ricevuto il Core Z. Così avverrà anche per i PWR-2 dei sottomarini lanciamissili 'Vanguard', che inizialmente avrebbe avuto il 'Core G', ma poi sarebbe stato aggiornato al 'Core H' previsto per gli SSN 'Astute'. Il funzionamento dell' Impianto Primario, ovvero di un reattore a circolazione d'acqua pressurizzata è semplice: il reattore surriscalda l'acqua, ma essa viene tenuta in pressione per impedire che essa si trasformi in vapore; a quel punto viene fatta circolare da pompe di elevata potenza, che sono la principale fonte di rumore per un SSN. Questi tubi del circuito passano in due caldaie, dove c'é altra acqua, la quale si trasforma, per via del calore, in vapore. Questo è il circuito secondario, ed è questo vapore che aziona le turbine. Queste ultime sono derivate da quelle delle fregate 'Leander', e queste a loro volta azionando due turbogeneratori che attivano il motore finale elettrico, mentre il vapore usato passa su due condensatori e riportato nelle caldaie. Ma è anche usato per scopi diversi, come la produzione di acqua dolce (o meglio, distillata). L'impianto primario è di tecnologia americana, ma quello secondario è molto dipendente da soluzioni autoctone, dalle pompe alle caldaie ai sistemi di insonorizzazione, molto potenti perché la sala macchine è davvero rumorosa. Non solo, ma le due turbine sono abbinate al motore che muove l'elica, e questa non è di tipo normale: è il 'pump jet', sperimentato sull'HSM Churchill negli anni '70 e con risultati positivi al punto che c'é stato un ri-travaso di tecnologia, dato che i 'Seawolf' hanno adottato tale sistema britannico.
 
Ma cos'é il pump-jet? Essenzialmente è una specie di elica intubata, che ha maggiore efficienza e minore rumore rispetto ad una normale elica falcata, e riduce il rischio di cavitazione. Le pale dell'elica normale danno una rumorosità eccessiva per il rischio che anche quelle più grandi e di elevato diametro siano sempre piuttosto inefficienti, e con la tendenza, nelle accelerazioni specialmente, a 'cavitare', il che produce non solo inefficienza, ma anche rumore. Strutturalmente il pump-jet è una specie di carcassa che contiene un condotto, statore fisso e un doppio rotore mobile, con diverse palette. Sono possibili ottimizzazioni, nel caso si voglia più prestazioni e velocità il rumore aumenta, il contrario è possibile se si cura d'eliminare il rischio di cavitazione. Esistono due tipi diversi di pump-ket, il pre- Swilr, con lo statore davanti ai rotori, e il post swirl, dove si verifica il contrario. Nel caso degli 'Swiftsure' è usato il pre-swirl, più semplice e con un miglior controllo della scia, i 'Trafalgar' con il post-swirl hanno un apparato più complesso, ma che riduce ancora la cavitazione. In entrambi i casi le dimensioni sono ridotte e sono ben integrati con lo scafo, mentre il condotto esterno, piuttosto che l'elica 'nuda', aiuta a proteggere da urti e danni vari. Tuttavia, ovviamente, il pump-jet è piuttosto pesante e complesso, costoso e poco efficace nelle manovre a macchine indietro, inoltre non è molto efficiente in manovra, specie a bassa velocità. L'energia di bordo, sempre fornita dai turbogeneratori a vapore, è per un totale di 4.900 hp. Ma vi sono anche emergenze o altre ragioni per le quali non si può usare il motore atomico, e allora è presente un generatore diesel da 1.920 hp, sufficienti essenzialmente per caricare le batterie che azionano il motore elettrico silenzioso o EPM (Emergency Propulsion Motor) per le emergenze. Vi è anche un piccolo motore di manovra idraulico, nella parte posteriore dello scafo, estratto per le manovre di precisione, come l'ormeggio, grazie all'elica orientabile di 40 gradi su ciascun lato. Ma questo sistema non è sufficientemente potente ed è noto come 'sbattiuova' per la sua azione. Beh, meglio che niente.
 
IL sistema di combattimento dell'SSN ha subito parecchi aggiornamenti, per restare all'altezza della situazione. IL sonar di chiglia principale era il tipo Type 2020 a banda larga, attivo-passivo a lungo raggio (e quindi a bassa frequenza), sistemato nella parte inferiore della prua; doveva essere sostituito da un Type 2074, ma questo non è avvenuto. Esso offre comunque un'ampia copertura nei settori prodieri, ma non basta. C'é anche un sonar laterale passivo Type 2072 e un sonar passivo lineare rimorchiabile, il Type 2046, in pratica una cortina di sensori vincolati ad un cavo selezionabile a 200 o 400 metri di lunghezza, ma esso non è riavvolgibile, come invece succede nelle unità americane. In pratica, esso può essere portato come una specie di sistema al gancio dei piani di coda all'uscita del porto, poi dispiegato, ma la lunghezza non è variabile né il sistema riavvolgibile in navigazione. Vi sono diversi sonar per diversi ambienti: programmata la modifica, un aereo della RAF porta il sonar apposito alla base di reipaggiamento, per poi riportare in patria il sonar 'usato'. Infine v'é un Type 2019 da intercettazione, con una cupola sul ponte. Esso serve per rilevare i sonar e i siluri in arrivo. Ma c'é anche un Sonar 2081 della GEC/Marconi-Celsea Instruments. Questo non è un sonar, ma un sistema a scafo che ha un sistema misto acustico e non acustico per 'sentire' i sottomarini, esaminando conduttività, condizioni oceanografiche, temperatura, e altro ancora, per rilevare le variazioni nell'acqua marina date da un altro sottomarino. E' un sistema ovviamente con dei limiti, probabilmente solo a corto raggio, ma è un apparato notevole.
 
Il sonar di bordo, infatti, non si usa se non raramente, e solo su ordine del comandante, che ne ha anche le chiavi di accesso. Infine c'é un Type 1007 di navigazione, un tipico radar britannico. L'ESM ha un Racal UAC e lo si definisce come 'estremamente efficace', ma si preferisce usare spesso le antennine ESM presenti a bordo dei periscopi, specie quello di ricerca. In torretta vi sono anche le radio HF, VHF e UHF in alberi retrattili in vela, e sui lati della stessa. Poi c'é una piccola boa galleggiante, che è un pò l'uovo di Colombo per evitare di emergere ed esporsi: è possibile filarla in superficie e comunicare in onde LF (Long Frequencies) stando immersi fino a 50 metri di profondità e oltre. Ma bisogna sapere anche dove ci si trova, e quindi vi è un apparato moderno anche in questo senso, non bastano più le bussole e le cartine. Si tratta di un SINS Mk.2 basato su piattaforme inerziali estremamente accurate, in un compartimento del 3o ponte. Questo sistema è così preciso da non richiedere il GPS, ma ovviamente dovendo fare 'in proprio', è costoso. In ogni caso, un riallineamento con il GPS è ovviamente positivo. Il SINS è estremamente preciso, eppure non fa uso dei giroscopi laser, che erano previsti successivamente.
 
==Navi anfibie==