Forze armate mondiali dal secondo dopoguerra al XXI secolo/Panavia Tornado: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
FrescoBot (discussione | contributi)
m Bot: accenti
Riga 25:
====Ali<ref>Dati da Sgarlato N, 'Speciale Tornado', 1991</ref>====
[[Immagine:F-15C Tornado IDS DFST8901717.JPEG|380px|left|thumb|La candida 'superiorità aerea' di un F-15 e i colori mimetici dei due Tornado di scorta. Non potrebbe esservi differenza maggiore tra le livree, così come tra le ali]]
I sistemi di controllo di volo sono molto sofisticati, con un apparato CSAS e un APFD. Il primo è per l'aumento della stabilità ed è a triplice ridondanza, ovvero capace di funzionare con due guasti nei circuiti; il secondo è un autopilota con una ridondanza quadrupla e quindi capace di funzionare con guasti del 75%. Controlla tutto il volo automatico della macchina e in particolare è legato al sistema di navigazione, machmetro e TFR. Questo spiega bene la ragione di tale ridondanza: un guasto durante il volo a bassa quota, magari di notte e ad alta velocità difficilmente darebbe modo all'equipaggio di salvare l'aereo e se stesso. Le superfici di controllo non ne comprendono alcuna ventrale, forse per non ostacolare il già ridotto spazio per gli armamenti, quasi tutti (malgrado la pubblicità Panavia) di fatto portati sotto il ventre, piatto e assai largo. Di fatto è una soluzione per sfruttare la fusoliera per creare una superficie portante aggiuntiva, aiutando le ali a fare il loro lavoro. E'È il concetto del 'lifting body', ma nel caso del Tornado trova solo una parziale applicazione, dato che non vi sono le gondole dei motori a contenere il flusso dell'aria (come sui caccia sovietici e sull'F-14) e il ventre è in genere 'sporcato' dai carichi esterni; tuttavia, se questo può servire, anche in maniera secondaria, a generare portanza, è un aiuto chiaramente benvenuto.
 
Prima si è parlato dell'ala, e allora torniamo sull'argomento perché merita. Al di là delle angolazioni già descritte, c'é da dire che il Tornado è riccamente fornito di superfici di controllo e di stabilizzazione. Ogni ala ha il bordo d'uscita totalmente occupato dagli ipersostentatori, che sono divisi in 4 sezioni. Sono sistemi Fowler, e come tali del tipo 'a spacco', per cui sono strutture che si aprono, quando necessario, come conchiglie, fornendo portanza o frenando l'aereo. Non vi sono invece alettoni: ogni ala, sul dorso, ha due 'spoilers', che controllano l'assetto agendo sull'asse di rollio con un'azione differenziata tra le ali. Infine vi sono gli slats in due sezioni, che sfruttano tutto il bordo 'entrata dell'ala, che così, per quanto piccola, è valorizzata al 100%. Sul dorso della fusoliera vi sono due grossi aerofreni, giusto ai lati delle ali. Le superfici di coda sono meno complesse, ma vale la pena di considerare che la coda ha due grossi 'taileroni', ovvero superfici orizzontali che sono interamente mobili, piuttosto che avere la classica cerniera che divide la parte mobile da quella fissa. Oramai tutti i caccia moderni tendono a sfruttare totalmente la superficie dei piani di coda rendendoli totalmente mobili, ma ovviamente, questo significa anche un sistema di controllo più energico e flessibile, visto che non vi sono più parti della struttura del tutto fisse e quindi intrinsecamente stabili. E le superfici di coda dell'aereo devono svolgere un lavoro onerosissimo, controllandone il volo a bassa quota e ad alta velocità. Per l'atterraggio ruotano verso l'alto e contribuiscono a fermare l'aereo sulla pista. Almeno la parte posteriore è con struttura a nido d'ape, così come la parte mobile del timone verticale. Questo è di dimensioni considerevoli, data l'esigenza di stabilizzare il più possibile il volo del Tornado. Come negli aerei classici, qui vi è una cospicua parte fissa e solo il timone vero e proprio è orientabile: non è facile, e forse nemmeno raccomandabile, studiare un aereo con timone del tutto mobile, a differenza degli equilibratori (piani orizzontali di coda, di cui abbiamo già detto). La coda è molto grande specialmente rispetto al Tornado IDS, sulla sua sommità ospita l'antenna VHF (annegata in un pannello dielettrico), RWR e (solo esemplari italiani) un sistema ECM ELT-555, nella parte anteriore ha la presa d'aria dello scambiatore di calore, e davanti ancora, congiungendosi alla fusoliera, ospita un'antenna HF, sempre del tipo 'a lama' e coperta da un dielettrico. Più dietro vi è uno scudo termico, per riparare la struttura dagli effetti dell'inversore di spinta, che provvede abitualmente ad investirla con getti di gas ad alta temperatura. I 'baffi' neri che si notano sulla vernice sono per l'appunto il segno inconfondibile dell'azione degli inversori di spinta.
Riga 57:
Per chi non si accontenta di quanto sopra, va anche detto che gli R-02 di preserie avevano una spinta minima di 265 kgs al 65% dei giri, massima continua a secco di 2.694 kgs, massimo a secco 3.694 kgs, con AB 3.898 kgs, al decollo 5.909 kgs e in combattimento fino a 6.120. Questo con atmosfera standard; con quella tropicale si scendeva a 224, 2.317, 3.235, 3.409. 5.134 e 5.337 kgs.
 
Da notare che tutti questi dati erano originariamente riservati, solo la RAF ha rilasciato le spinte effettive dal manuale di volo. Si pensi che l'equivalente americano F404 ha 12 stadi (è una più semplice formula bialbero), compressione di 26:1, diluizione di 0,27:1, dimensioni 88 x 400 cm, peso 1.016 kg, rapporto potenza peso 5/7,9:1 anziché 4,5/7,8. Il rapporto potenza: peso è simile, ma attenzione: non è così con la potenza a secco. L'RB.199 Mk.105 aumenta la spinta del 72% quando aziona l'AB, anziché il solito 40-50%. Anche per questo il consumo dell'RB.199 va alle stelle. Da un lato, esso è eccellente per il funzionamento a quote medio-basse, tipiche del Tornado, finché si vola senza AB. Quando però c'é da dare gas e magari volare nella stratosfera le cose cambiano. Già il Tornado è notevolmente sottopotenziato come caccia (non come bombardiere), ma il problema è la scarsa autonomia che gli resta con l'AB inserito. Un aereo per molti aspetti simile (e davvero multiruolo), il Viggen, ha un problema analogo. Il motore qui è l'RM-08, un turbofan civile militarizzato e decisamente grosso e pesante. Tuttavia come potenza è quasi pari ai due RB.199, è analogo come diluizione, e come 'botta' data dal postbruciatore. Tuttavia il consumo specifico aumenta da 18 a 72 mg/N<ref>Vedi Nativi, articolo RiD sul Viggen del giugno 1993</ref>. Se si passa da una potenza in crociera di 4.000 kgs alla massima assoluta, si arriva a un valore almeno 12 volte superiore, da qui l'annichiliazione delle riserve di carburante in pochi minuti. Per il Tornado è lo stesso, anche se vi sono noti meno dati in merito e pertanto la cosa va studiata con attenzione: l'aereo potrà anche scappare da un inseguitore, ma se eccede di poco rispetto al minimo richiesto, allora rischierà di finire il carburante al ritorno. Se questo non è successo in Desert Storm e altre operazioni è dovuto al gran numero di cisterne disponibili, che hanno ovviato ad un po' tutte le necessità. Ma forze come la LW e l'AMI non l'avevano di loro, buddy-buddy a parte. Inoltre il raggio d'azione, teoricamente elevato, non è stato rispettato totalmente: i Tornado IDS avrebbero dovuto colpire un bersaglio a 1.390 km con 8 bombe da 454 kg (3.600 kg), o 1.800 con quattro, o addirittura 2.500 km con 5 armi da 227 kg<ref>Sgarlato, op. cit</ref>. In realtà si tratta di dati irreali, dato che l'autonomia di trasferimento è di circa 3.900-4.250 km (progressivamente aumentata con gli anni, per ragioni non meglio note), quindi si arriverebbe a valori addirittura superiori al massimo percorribile con il massimo del carburante e a velocità economica. Sta di fatto che i Tornado AMI di Al Dhafra erano a circa 1.000 km di distanza dagli obiettivi, volavano quasi esclusivamente (specie dopo le prime missioni) a media quota per il massimo risparmio di carburante (cosa ben diversa dal volo radente, anche per il Tornado vi sono senz'altro delle differenze), eppure per arrivare sul bersaglio con 2.300 kg di carico (più ECM, cannoni e Sidewinder) necessitavano di più rifornimenti in volo. In teoria avrebbero potuto arrivare fino a Baghdad e con il 50% del carico in più.
 
[[File:GR4_VC10.jpg|300px|right|thumb|'Il pieno, grazie']]
Riga 79:
Vi sono anche un radioaltimetro (Aeritalia) per il volo a quote basse, sistemi di comunicazione, HUD Smiths/Teldix/OMI, LRMTS (solo per la RAF), schermi catodici piatti AEG/Selenia/MArconi, mapa mobile Astronautics (di cui si è già parlato), piattaforma inerziale di navigazione ad alta precisione Ferranti triassiale FIN-1010, radar Doppler per navigazione Decca Type 72 e RWR.
 
Le ECM integrate o integrabili sono di diverso tipo, ma tutte e soltanto esterne, non essendovi spazio all'interno per ospitarle: ARI-23246/Sky Shadow per la RAF, AEG Cerberus II, III, IV e Zeus (Germania), Elettronica ELT-457, Selenia ALQ-234 (AM, a tutto il 1991 non in servizio operativo), ALQ-119 (visto in macchine tedesche), lanciatori ALE-40 (parte posteriore della fusoliera, solo saltuariamente usati), BOZ-100 (325 kg) in modelli come il BOZ-101 (Germania), 102 (Italia), 107 (UK), che sono sistemi svedesi a forma conica e appuntita, sistemati sotto le ali. In genere vi è un lanciatore di chaff e un pod ECM, ma il fatto di non essere fissi e il loro costo non necessariamente consentono di equipaggiare ciascuna macchina con un sistema proprio. Del resto il vantaggio dei 'pod' è anche questo, le ECM possono essere spostate da un velivolo all'altro, così se un reparto, per esempio, ha una dotazione di 18 aerei ma con 8 pod ECM, se ogni volta servono non più di 8 aerei questi potrebbero essere sempre disponibili per tutti quelli impiegati in azione. Per le macchine italiane la situazione è diversa, e forse per questo in genere hanno solo due lanciatori BOZ-102 esterni: infatti le ECM sono interne, sotto forma di un sistema Elettronica ELT-553, progressivamente aggiornato negli anni (l'Mk.2 era già disponibile attorno al 1991). E'È un particolare poco noto, che permette di portare a un sistema ECM e raddoppiare il numero dei pod lancia-chaff esterni. Va detto che peraltro questo sistema, di cui si sa ben poco, è effettivamente 'stealth'. L'unica antenna visibile che ne testimonia la presenza è sistemata sotto l'RWR posteriore, una piccola struttura simile ad una luce di navigazione. Apparentemente vi è solo questa, il che darebbe copertura solo al settore posteriore. Non pare che abbia avuto fortuna contro gli ZSU (almeno nella prima missione), e non è chiaro se sia un vantaggio avere questo sistema rispetto ai pod esterni. argomento largamente dibattuto anche negli USA (l'USAF spesso ha sistemi esterni, l'USN pressoché sempre interni per non 'rubare' spazio ad armi e serbatoi), i pod possono essere ingombranti, ma sono estremamente facili da aggiornare, sostituire e mantenere rispetto ai tipi interni.
 
====Armi====
Riga 93:
È possibile usare gli AGM-88 HARM (in Italia dalla metà degli anni '90, ma la MF ne aveva ordinati 556 già per la fine degli anni '80), i vecchi Shrike, e gli ALARM inglesi (solo RAF e RSAF), minuscoli missili trasportabili in teoria anche in 9 esemplari, capaci persino di cercare l'obiettivo dopo una cabrata e l'estrazione di un paracadute. Le bombe nucleari tattiche WE-177 inglesi o ordigni statunitensi equivalenti, lanciabili anche a bassa quota ed alta velocità, completano la dotazione, mentre mai sono stati utilizzati missili nucleari come l'ASMP francese. L'autodifesa è affidata a due missili AIM-9L Sidewinder posizionati all'interno dei piloni subalari principali, mentre quelli esterni trasportano i sistemi ECM.
 
Tra gli equipaggiamenti che vale la pena di ricordare del Tornado, va ricordato il TIALD<ref>articolo A&D dic 1988</ref>, che il 27 ottobre 1987 venne annunciato come programma binazionale tra Ferranti e industrie italiane come Galileo e Breda. TIALD significa Thermal Imaging Airborne Laser Designator), in sostanza un apparato con camera termica e designatore laser per impieghi ognitempo. Per realizzare questo apparato era stata annunciata da parte dei direttori generali dell'Aeritalia e della Ferranti una società congiunta, la Elettronica Aerospaziale Europea, probabilmente da allestire in Lazio. Nel frattempo la RAF l'aveva ordinato in 10 esemplari per i Tornado, ed era stato proposto all'AMI per gli AMX, in concorrenza con l'ATLIS francese. In effetti non pare che la cosa andò in porto, sebbene un prototipo dell'aereo italo-brasiliano lo portò sotto la fusoliera per valutazioni. A dire il vero, non pare che la produzione sia stata poi organizzata in maniera binazionale, forse la collaborazione saltò per la concorrenza francese (l'ATLIS venne alfine scelto dall'AM). Il TIALD, che debuttò in maniera limitata nella guerra del '91, è lungo 2,6 m, diametro 305 mm, peso 150 kg, con testa rotante per seguire il movimento dei bersagli con alzo tra +50 e -155 gradi, rotazione longitudinale di 180 gradi per lato, sistema databus 1553B. Ha un FLIR con campo visivo di 3 o 12 gradi, nella stessa testa rotande con il FLIR c'é anche il laser. La stabilizzazione è con un sistema a specchio per ammortizzare le vibrazioni. E'È utilizzabile anche per la ricognizione aerea, e persino la localizzazione aria-aria. Questo primo esempio di sistema ognitempo per la guida delle armi aria-superficie in Europa è stato tutto sommato un successo relativamente modesto, malgrado tutte le speranze suscitate, sicuramente inferiore a quanto ha ottenuto il concorrente ATLIS.
 
A questo punto di si può anche chiedere quale sia la capacità complessiva del Tornado, quanto ad armamento trasportabile. Il peso ufficiale è di 8.165 kg, ma questo è un dato eccessivo per certi versi, inferiore per altri. In effetti, i carichi esterni sono teoricamente i seguenti: pilone centrale sotto la fusoliera, 907 kg; gli altri 4, sempre sotto la fusoliera, da 907 kg l'uno; subalari interni da 1.361 kg, subalari esterni da 454 kg, per un totale equivalente a 18 bombe da 454 kg. Tuttavia, il Tornado non va mai in azione con più di otto armi di questo tipo, oppure da 272 o 227 kg. Spesso, anzi, vengono usate 4 bombe da 454 kg oppure, impiegando tutti i piloni subalari, cinque (come le macchine AMI nel Golfo). Le bombe a caduta ritardata pesano circa 500 kg, quelle Paveway 513 kg, ma se ne possono portare solo due o tre. Quando l'aereo vola con missioni di ricognitore, in genere ha solo il pod MBB/Aeritalia (per l'AMI ne sono stati comprati una ventina); per azioni WW sotto la fusoliera sono portati 2 HARM oppure 2 o 3 ALARM. Sotto le ali v'é pressoché sempre la necessità di portare due serbatoi da 1.500 o più litri, nello stesso pilone interno c'é anche la rotaia di lancio laterale per un Sidewinder. Sui lati del pilone interno è possibile anche installare una seconda rotaia, e teoricamente, un Tornado IDS potrebbe portare così due missili. Mai nel caso dei Sidewinder, ma si sono visti voli dimostrativi con sette ALARM, di cui 4 sotto la fusoliera. E se venissero omessi i serbatoi esterni, se ne potrebbero portare persino nove! Ma di fatto questo non accade e le rotaie doppie sotto le ali sono state adottate solo dai Tornado F.Mk.3, per raddoppiare il numero dei Sidewinder. I Tornado ECR sono talvolta dotati di due HARM aggiuntivi, ma questi missili americani sono molto più grossi degli ALARM e così impediscono l'uso dei serbatoi subalari, ma dato che complessivamente è ancora un carico modesto (1.400 kg circa) si può anche fare. Stesso discorso per i Kormoran e i Sea Eagle, ma data la massa considerevole (oltre 600 kg) in genere i Tornado usano solo due missili ventrali. Ai piloni esterni vi sono sempre pod ECM dei tipi summensionati. In tutto, il Tornado è costretto a portare circa un terzo del carburante tipico di missione, nonché gran parte degli apparati ECM, esternamente, proprio come l'F-16; è talmente 'pieno', al suo interno, da non avere mai avuto lanciatori di chaff e flare (al più si possono usare gli ALE-40 ai lati della fusoliera, essenzialmente dai Tornado ADV usualmente sprovvisti dei BOZ). Quanto alla capacità di carico, essa è quindi limitata in pratica a quello che si può portare sotto la fusoliera, ed è già tanto che si sia trovato il modo di mettervi 8 bombe da 454 kg oppure addirittura i lanciatori speciali JP o MW per complessive 4,5+ tonnellate. Con i serbatoi, AIM-9 ed ECM si arriva agevolmente a carichi di circa 7 t esterni con le bombe, e 8 t con le spezzoniere. Ma il Tornado è capace di fare persino di più: alcuni voli-record hanno visto Tornado sollevare fino a 12-13 tonnellate di carichi esterni <ref>Sgarlato, op. cit</ref>(purtroppo non è dato sapere di che tipo), ma ovviamente sono valutazioni sperimentali, a carburante pressoché zero.
Riga 236:
Nell'operazione Iraqi Freedom, l'invasione dell'Iraq del 2003, invece vennero schierati oltre 100 aerei inglesi, tra cui elementi di sei squadroni di GR Mk 4 (precisamente i No.9, 12, 13, 14, 31 e 617) e di 4 unità con gli ADV (i No.11, 25, 43 e 111). I primi erano con la 386th Air Expeditionary Group, sulla Ali Al Salem AB, Kuwait; i secondi facevano parte della 363rd Air Expeditionary Wing, che era sulla Prince Sultan AB, Arabia Saudita e che comprendeva anche forti unità dell'USAF con F-15, F-16, E-3 e E-8. Vennero usate per la prima volta anche i missili aria-superficie a lungo raggio Storm Shadow, ordinati anche dall'AM, e un Tornado venne abbattuto per errore da un missile Patriot PAC-3.
 
Gli aggiornamenti per il valido ma un po' anziano Tornado ora comprendono lo standard GR Mk.4, originariamente previsto per 165 aerei aggiornati e 26 nuovi, poi ridotti a 142, solo conversioni. Dimostratore in volo il 29 maggio 1993, ma l'entrata in servizio poté avvenire solo 5 anni dopo. Dotazione avionica comprendente HUD grandangolare olografico, schermi multifunzione a cristalli liquidi, schermo cartografico con generazione digitale dell'immagine e altre modifiche, come il Pod da ricognizione Raptor. Le macchine tedesche hanno avuto aggiornamento al Batch 5 e poi un sistema di aggiornamento chiamato KWKS, Kampfwertassungs program, che comprende calcolatore centrale e sistema di distribuzione dati MIL-1760, successivo al ben noto 1553.
 
I Tornado italiani hanno anch'essi avuto, nel tempo,aggiornamenti, ma a parte la conversione ECR-IT è stato approvato il MLU-It con il primo esemplare volante nel 2002. 18 macchine aggiornate in questo primo lotto con linguaggio ADA ,sistema atterraggio strumentale MLS e compatibilità con il Thomson CLDP (visore-designatore termico e laser), 20 dei quali ordinati negli ultimi anni. Attualmente i Tornado italiani hanno cominciato ad operare in Afghanistan (dal 2008) come ricognitori; l'ultima 'edizione' delle regole d'ingaggio volute dall'attuale governo italiano parla anche dell'impiego degli aerei in azioni d'attacco, sia pure limitandosi ai cannoni, precisi a sufficienza per eliminare i danni collaterali. Ma la situazione nella martoriata nazione asiatica non accenna a migliorare, a dispetto della potenza di fuoco schierata e delle munizioni sempre più intelligenti (tra cui i razzi MLRS dotati di sensore GPS), UAV, UCAV, visori termici e blindati antimina. Come nelle precedenti crisi internazionali, così ricorrenti dalla fine della Guerra fredda (e dalla sua logica di management politico attento e ben proporzionato alle necessità, come con la Crisi dei missili), si tratta di un problema causato sopratutto dalla mancanza di soluzioni politiche, demandate alla potenza delle armi, e come sempre, senza riuscire a risolvere un problema che non ha mai soluzioni facili e tantomeno basate sulla logica della tecnocrazia.
Riga 338:
 
===Capacità e limiti===
Riassumendo quanto detto sopra, il Tornado è stato concepito con l'idea di 'compattare' in un solo progetto tutte le esigenze di una moderna forza aerea NATO. Tuttavia, la cancellazione del PA-100 è stata un duro colpo, riducendo la scelta al solo modello pesante, decisamente inadatto ai duelli aerei di prima linea. Il bombardiere tattico ha reso possibile l'attacco ognitempo con armi sofisticate, in misura ben superiore a quella dell'F-104G ed S. E'È possibile volare interamente in modalità automatica sul livello del terreno (TFR) o del mare, arrivare con grande precisione in ogni parte della Terra, persino in un'epoca antecedente al GPS, e scaricare le armi con l'ausilio di sofisticati computer e HUD (sebbene quest'ultimo ingombri un po' la visuale anteriore, per via dei montanti piuttosto spessi). Non che vi sia una grandissima differenza con gli F-104G per raggio d'azione e velocità, ma le capacità complessive sono superiori, così come il carico bellico, e la possibilità di usare strisce di volo piuttosto brevi. Le superfici di decollo devono però essere dure; quelle in terra o erbose non sono nemmeno idonee al parcheggio dell'aereo. L'armamento è stato considerato con un gran numero di armi e combinazioni, ma di fatto l'aereo vola normalmente con 4 o 5 bombe normali, ritardate o CBU, sia di tipo britannico che inglese. Oppure vola con due o al massimo tre missili aria-superficie antiradar, aria-superficie o antinave. Poco usate armi guidate controcarri, come il Maverick, e meno ancora i razzi, quasi inutili contro la maggior parte dei bersagli strategici.
 
Il raggio d'azione è ampiamente dibattuto. Come si è detto, si parlava di 1.390 kg con 8 bombe da 454 kg in missione hi-lo-hi, e persino di più con carichi minori, ben 1.800 km con la metà del carico. Però poi si è rettificato a 1.265 km nel primo caso, conteggiando anche pod ECM e altri carichi esterni, e a 1.400 km con 5 bombe Mk. 83. Sgarlato dice che questi dati sono in accordo con quanto ufficialmente dichiarato, ma questo non è vero. Infatti, in origine le bombe trasportabili a 1.350-1.400 km erano 8, non 4, mentre se con 5 ordigni si arriva a 1.400 km, non si capisce come si potrebbe arrivare a 1.800 togliendo semplicemente una bomba. In Desert Storm, si è visto che con questo carico (cinque armi) erano necessari vari rifornimenti in volo, anche se gli obiettivi non arrivavano nemmeno a 1.200 km di distanza, e il volo era nelle condizioni più favorevoli. Questo significa che il raggio d'azione, con 5 bombe, è poco più della metà di quanto dichiarato in origine e per giunta con profili di volo migliori: probabilmente solo 800-900 km anziché i 1.600 stimabili dai dati originali. Del resto, per un aereo con un'autonomia di trasferimento di 4.000 km, già un raggio pratico di 1.400 km in missione di bombardamento è difficilmente sostenibile, visto che comporta un raggio d'azione pari al 70% della massima autonomia, quando molti aerei nemmeno arrivano, nelle stesse condizioni, alla metà. Un F-104S, per esempio, ha un'autonomia con 4 serbatoi di 2.920 km, un raggio max aria-aria di 1.250+, un raggio a massimo carico bellico (7 bombe M117 da 340 kg nominali, oltre 2,3 t) di 608 km in missione hi-lo-hi (avvicinamento e allontanamento ad alta quota, corsa d'attacco, attacco e disimpegno a bassa quota), oppure 481 km interamente lo-lo-lo<ref>dati JP-4 maggio 1998</ref>. Un AMX ha un'autonomia di 3.500 km in trasferimento, ma in azione ha un raggio massimo di circa 1.300 km, pur non avendo l'incognita del postbruciatore<ref>monografia di A.Nativi, su RiD agosto 1993</ref>.