Forze armate mondiali dal secondo dopoguerra al XXI secolo/Francia-7: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Riga 237:
Una via europea era il SAMP anglo-francese, un sistema che finalmente poteva superare il rapporto di netta sudditanza europea verso la tecnologia americana. Esso nacque nel 1972 unendo le ancora ricche energie delle due maggiori potenze europee, molto attive anche nel settore missilistico. Nel 1977 si arrivò al TRISAM, allorché entrò in scena anche la Germania Occidentale, l'altra grande potenza europea e alleata già della Francia con numerosi programmi (di fatto la Francia era il punto di congiunzione delle altre due nazioni, che non erano molto in collegamento tra di loro, o almeno, non ancora). Questo missile era ancora un'arma terrestre, mentre nel frattempo veniva portato avanti un sistema navale chiamato 6S fin dal 1976, con Danimarca, Francia, Germania e GB, nonché un secondo sistema, l'AMSA franco-britannico, nato nel 1978.
 
Sembrava una cosa piuttosto promettente, ma il rigoglio di tutti questi progetti europei si spense presto. I Francesi nei primi anni '80 si ritrovarono da soli con i loro programmi SA90 terrestri e SAN navali (di Thomson-CSF e Aérospatiale). Svilupparli costava molto e nel 1983 la DGN (Direzione generale degli armamenti) assegnò un contratto per la fase di dimostrazione, mentre al contempo i due programmi si fondevano in uno soltanto, quello che vedeva il missile Aérospatiale ASTER e il radar Thomson ARABEL (Antenne Radar à Balayage Electronique) in banda X. Erano dei validi sistemi per puntare sul futuro, ma a patto di tenere i costi bassi. Nel
Questo frattemposistema laera Selenia stava sviluppando il sistemanoto missilisticocome IDRASYRINX, unacon speciemissili diASTER Aspidee avanzatoradar (all'epocaARABEL giànati compratoe inconcepiti numerosidirettamente esemplari,per anchequesti all'export)compiti: conper guida radar attivaesempio, e assieme alla Marconiingaggiare l'EMPARUAV, uninterdittori radar binazionalesupersonici, unmissili antinave sullacon falsarigacapacità deldi programmamanovrare, EH101sistemi (European Multifunction Phased Array Radar) che era un sistemabalistici a lungocorto raggio, operante in banda C e progettato per le previste fregate europee NFR-90.
 
Nel frattempo la Selenia stava sviluppando il sistema missilistico IDRA, una specie di Aspide avanzato (all'epoca già comprato in numerosi esemplari, anche all'export) con guida radar attiva, e assieme alla Marconi l'EMPAR, un radar binazionale, un pò sulla falsariga del programma EH101 (European Multifunction Phased Array Radar) che era un sistema a lungo raggio, operante in banda C e progettato per le previste fregate europee NFR-90.
Visto che c'erano delle convergenze, con i Francesi che avevano il missile più prestante e gli italo-britannici il radar più potente, si trovò un punto di unione nel 1987, quando nel gennaio iniziarono i colloqui e il 27 ottobre venne firmato il MoU (memorandum of understandement) tra i due governi. Aprile 1988: firma di un MoU tra patner industriali, con il governo francese che passa 2,4 mld alle sue industrie ; 26 ottobre 1988, MoU tra i due ministeri della Difesa; gennaio 1989 creato l'ufficio del progetto programma FSAF a Parigi; 9 giugno 1989, creazione consorzio Eurosam; luglio 1989, prime proposte per la fase 1; dicembre, proposte accettate dai due ministeri della Difesa; nel 1990 Aérospatiale, Selenia (poi Alenia) e Thomson-CSF si misero insieme nel GIE (Groupemen d'Interet Economique) EUROSAM. La collaborazione era 50-50 tra Italia e Francia, ma al contempo la partecipazione era del 33% per ciascuna società. Dunque la Francia aveva il doppio di responsabilità dell'Italia. Così il missile Aster, nato come arma francese, è rimasto sopratutto tale, anche se il programma è diventato binazionale. Il 22 maggio arrivò il MoU finanziario, che ammontava a 9,5 mld di franchi o 2.200 miliardi di lire, oltre a 1,5 mld di franchi per compensare l'inflazione prevista nei successivi 10 anni. Giugno 1990: primo lancio sperimentale di un ASTER; ottobre 1990, sviluppo Fase iniziale completata. Nel Dicembre 1992 gli studi SAMP/N e LAMS sono completati e presentati, e nel contempo vengono definiti i SAMP/N e LAMS, con l'inclusione quasi a sorpresa, della Marina britannica; 1993, inizio ingegnerizzazione industriale per SAAM e SAMP/T e inizio sviluppo LAMS e SAMP/N, previsto nel 1998 per la portaerei De Gaulle e 1999-2000 il SAMP/T sarebbe messo in servizio con gli eserciti (previsione non azzeccata) e nel 2002-5 le fregate con LAMS e SAMP/N.<ref>Bonsignore, Ezio: ''FSAF''. apr 1993, p. 52-65</ref>
 
Visto che c'erano delle convergenze, con i Francesi che avevano il missile più prestante e gli italo-britannici il radar più potente, si trovò un punto di unione nel 1987, quando nel gennaio iniziarono i colloqui e il 27 ottobre venne firmato il MoU (memorandum of understandement) tra i due governi. Aprile 1988: firma di un MoU tra patner industriali, con il governo francese che passa 2,4 mld alle sue industrie ; 26 ottobre 1988, MoU tra i due ministeri della Difesa; gennaio 1989 creato l'ufficio del progetto programma FSAF a Parigi; 9 giugno 1989, creazione consorzio Eurosam; luglio 1989, prime proposte per la fase 1; dicembre, proposte accettate dai due ministeri della Difesa; nel 1990 Aérospatiale, Selenia (poi Alenia) e Thomson-CSF si misero insieme nel GIE (Groupemen d'Interet Economique) EUROSAM. La collaborazione era 50-50 tra Italia e Francia, ma al contempo la partecipazione era del 33% per ciascuna società. Dunque la Francia aveva il doppio di responsabilità dell'Italia. Così il missile Aster, nato come arma francese, è rimasto sopratutto tale, anche se il programma è diventato binazionale. Il 22 maggio arrivò il MoU finanziario, che ammontava a 9,5 mld di franchi o 2.200 miliardi di lire, oltre a 1,5 mld di franchi per compensare l'inflazione prevista nei successivi 10 anni. Giugno 1990: primo lancio sperimentale di un ASTER; ottobre 1990, sviluppo Fase iniziale completata. Nel Dicembre 1992 gli studi SAMP/N e LAMS sono completati e presentati, e nel contempo vengono definiti i SAMP/N e LAMS, con l'inclusione quasi a sorpresa, della Marina britannica; 1993, inizio ingegnerizzazione industriale per SAAM e SAMP/T e inizio sviluppo LAMS e SAMP/N, previsto nel 1998 per la portaerei De Gaulle e 1999-2000 il SAMP/T sarebbe messo in servizio con gli eserciti (previsione non azzeccata) e nel 2002-5 le fregate con LAMS e SAMP/N.<ref>Bonsignore, Ezio: ''FSAF''. apr 1993, p. 52-65</ref>.
 
Nasceva così vari filoni della famiglia ASTER: il FSAF (Future Surface to Air Family), che sarebbe stata costituita da SAAM, SAMP/T e SAMP/N. Il primo è diventato poi l'ASTER 15: si tratta del S.A. Anti-Missile, con distanze di intercettazione previste di 15-20 km contro aerei e missili subsonici, 8-10 contro missili supersonici e capaci di volare a mach 2,5 e a pelo d'acqua, nonché di manovrare fino a 15 km. Era insomma un missile esuberante che dà l'idea di quanto limitati fossero i precedenti SAM nel tiro antimissili, e in particolare, significa che si trattava di un'arma capace di affrontare i missili SS-N-22 o i futuri ANNG (poi abortiti). Questo missile per autodifesa avrebbe avuto il più piccolo radar ARABEL sulle navi francesi, e l'EMPAR (sovradimensionato per il compito, ma la logica era ovviamente di tipo industriale più che operativo) per le navi italiane. Tipicamente erano previsti 32 missili in otto moduli di lancio verticali e un peso, incluso il radar, di 50 t circa. Quest'arma era ottimisticamente prevista per entrare in servizio nel 1997; di fatto, la fine della Guerra fredda avrebbe posto dei problemi temporali a tale previsione, ma questo lo vedremo poi.
Line 253 ⟶ 256:
 
Le prestazioni calcolate:
*Missili ASTER 15: booster da 1,6 m e 35 cm di diameto; lunghezza 4,2 m, peso 300 kg totale; velocità max 3,5 mach, manovra fino a 15 g; controllo PIF-PAF (Pilotage en Force Aerodynamique Fort), ovvero con deviazioni del getto e sistemi aerodinamici; guida INS (con giroscopio laser della ISI, sussidiaria di Sagem e Fiat), datalink di aggiornamento, radar di aggancio attivo Dassault AD4A. Questo è un radar Pulse-doppler in miniatura, lo stesso montato nella testata del MICA. Anche il missile vero e proprio, ovvero il secondo stadio (il primo, una volta finita la carica, si sgancia naturalmente per attrito aerodinamico), somiglia molto all'ASTER, ma con alette di stabilizzazione più grandi e squadrate, al cui interno vi sono i getti di deviazione. La testata è di 10-15 kg. Portata max nominale 15 km, ma in pratica anche oltre 30.
*ASTER 30, come sopra ma con un booster più grande, dimensioni 4,8 m di lunghezza (il diametro del missile resta di 18 cm), peso 450 kg, il booster è lungo 2,2 m. Gittata oltre 30 km (anche 80, seconda delle situazioni).
*ARABEL: banda X, impulsi compressi co nfascio comprimibile ad appena 2°, antenna planare phased array con alzo fino a 70° (elettronico), portata 60 km contro un bersaglio di 2 m2 e inseguimento di 100 bersagli, con ingaggio di 10 (con 16 missili)
Line 277 ⟶ 280:
 
Infine la capacità ATBM era portata avanti con studi teorici e v'era la partecipazione al programma UK-MSAM per rimpiazzare gli efficienti ma invecchiati Bloodhound.
 
 
----
 
Il 1993 vide anche il TSR (specifica trilaterale) per le capacità ATBM relative al SAMP/T. La Fase 1, che come si è visto, costava 1,6 mld di euro (espressi con valori attuali) finiva nel 2001, mentre iniziava la Fase 2 già nel 1997, per altri 790 mln di euro, così da sviluppare i SAAM-It e SAAM-Fr, con due mini-batterie sperimentali, una per ciascuna configurazione. Nel 1998 veniva completato lo studio per il Block 1 dei sistemi SAMP/T che avevano capacità antimissili contro ordigni fino a 600 km su superfici di circa 600 km, al contempo ha ridotto i costi e aumentato la mobilità e ridotto i costi, oltre a migliorare la capacità di resistere ad attacchi di saturazione, temuti fin dai tempi dell'attacco nel 1982 ai Siriani da parte Israeliana.
 
----
 
Nel 2001 <ref>Stanglini R: ''All'altezza della Sfida'', PD 54-59</ref> vi sono stati importanti test: il 31 maggio e il 29 giugno degli ASTER 30 colpirono con impatto diretto due bersagli C-22 simulanti aerei da guerra elettronica, con tanto di pod ECM di protezione. Si trattò del 6o e il 7o impatto diretto contro un bersaglio, e in particolare riportarono il 19o successo su 22 tiri fin'allora fatti con il missile. Nel frattempo la Gran Bretagna si era dissociata dal programma Horizon per darsi ai suoi Type 45 DARING, ma ancora dotati di missili ASTER. Questo doppio successo è stato fatto ai danni di uno dei due aerobersagli che volavano vicini tra di loro, attaccando quello inquadrato. Si sarebbe dovuto usare due missili, per ingaggio, ma di fatto questo non è stato fatto per ragioni d'economia, anche se poi i risultati hanno dimostrato che, anche contro bersagli piccoli e protetti da ECM la cosa si è dimostrata possibile persino con un solo missile. I lanci sono avvenuti nel poligono delle Landes, dalla nave sperimentale I. D'Orleon.
 
Da notare che in precedenza v'erano stati dei problemi con alcuni lanci di missili ASTER-15, per cui quel doppio successo è stato particolarmente significativo. Dopo l'altro lancio previsto nell'estate, la nave francese per esperienze è stata messa fuori servizio e sostituita dalla fregata ASW Carabiniere per il SAAM/IT e PAAMS, con sei lanci di qualificazione entro il 2002, in collaborazione con il centro sperimentale di Tolone. In seguito ha avuto lanciatori per i missili ASTER 30 oltre che i -15, e il radar EMPAR in un'apposita cupola. Il contratto HORIZON venne firmato da Italia e Francia nell'ottobre 2000, e due mesi dopo dai britannici, i quali tuttavia presto si sono orientati ad un progetto di nave nazionale.
 
Quanto al missile, il SAMP/T era visto precedere da uno studio di fattibilità già nel 1983, quando era solo un programma francese, e dall'accordo del 1988 italo-francese, da una generica capacità antimissile; con la Fase 2 del FSAF si è invece voluto aggiungere una capacità di proteggere fino a 100 km2 con una singola batteria, con distanze di ingaggio missili fino a 12 km e passa. Questo è il missile Block 1, sopratutto voluta dalla Francia per le sue 12 batterie di SAMP/T. Da notare che queste sostituiscono tutte le batterie HAWK in un numero uno-a-uno, ma destinati anche all'Aviazione. L'Italia, invece, forse perché coinvolta anche nei programmi MEADS (per sostituire i N.Hercules), si accontentava di molto meno, appena 6 batterie all'epoca, quando i sistemi HAWK da rimpiazzare erano ben 22 batterie. In tutto c'erano da spendere circa 2,8 mld di euro, di cui uno per l'Italia e 1,8 per la Francia, il che era difficile da sostenere per i bilanci, e l'addizione di capacità antimissile spinte era un problema ulteriore con spese aggiuntive.
 
Con la Fase 3 del programma attorno al 2002 si era parlato sia della firma per 18 sistemi terrestri, sia per quelli navali, con 11 sistemi ASTER 15 per 5 diversi Paesi con 200 missili, ergo i sistemi PAAMS; mentre quasi altrettanti missili e 3 PAAMS per le fregate antiaeree della produzione iniziale. Se me prevedevano altri 2 sistemi per i Francesi e Italiani, e 2-5 britannici. Si pensava che la versione export del SAMP/T sarebbe stata disponibile per l'export nel 2005.
 
 
----
Tornando a tempi più moderni, una data importante è stata la creazione della MBDA, il colosso missilistico europeo; il consorzio EUROSAM vide il carico di lavoro passare alla MBDA per il 66,6% e al 33,3% a Thales (ex-Thomson-CSF, che ha cambiato il nome dopo il dicembre 2000).
 
La Fase 3 è stata avviata nel 2003 e non più sotto il controllo della DGA francese ma dell'OCCAR (Organizzazione Congiunta in Materia d'Armamento). Per i due clienti principali erano previsti all'epoca questi quantitativi: per la Francia: 12 batterie SAMP/T con 575 missili ASTER 30, molti, ma metà delle batterie per l'Aeronautica; l'Esercito Italiano avrebbe così avuto la stessa dotazione di missili di quello francese: 6 batterie con 288 missili; costo totale: ben 3 mld di dollari, di cui i 2 terzi a carico francese. Nel totale però erano previsti anche alcuni ASTER 15 per ciascuna delle due nazioni. In tutto i missili ASTER erano ordinati presumibilmente in circa 1000 esemplari da tutte e due le nazioni di 'lancio'. Dicembre 2008, altra data fondamentale: dopo che finisce la Fase due e arrivano a consegna le due batterie 'teste di serie', per l'Aeronautica francese e per l'E.I., quel mese arrivano anche le prime due batterie di serie per i due Paesi. La Fase 3, la produzione in serie, durerà pare fino al 2015, ma nel frattempo ci si è accordati anche per la riduzione del totale delle batterie, sia pure mantenendo le proporzioni: 10 batterie per la Francia, 5 per l'Italia, la quale ultima aveva persino pensato di dimezzarle ad appena 3. Da notare che nel frattempo la Francia, per non disperdere le sue unità di tiro, le ha assegnate tutte all'Aeronautica, che di fatto ha rimpiazzato l'Esercito nella difesa antiaerea (i sistemi HAWK nel frattempo sono in radiazione). Per l'Italia si trattava di una spesa di 1.090 mln di euro, davvero molti (ma meno di quanto costano altri programmi), che con la rinuncia ad una batteria si sono ridotti a soli 900. Questo significa che ogni batteria ASTER costa circa 180 mln di euro con 48 missili a seguito.
 
Parte dei soldi risparmiati sarà così deviata verso la versione navale per le FREMM, tuttavia disponibile solo dal 2013 in poi. NEl frattempo il costo del programma, per l'Italia, è aumentato da 25,1 mln nel 2003, a 52,3 nel 2004, 63,2 nel 2005, 98,7 nel 2006, 189,9 nel 2007, arrivando a ben 268,3 nel 2008. Tutti i sistemi in Italia saranno mandati al 4° Rgt 'Peschiera' di Mantova,. Attualmente i Rgt contraerei a medio raggio dell'E.I. sono questo e il 5° Pescara basato a Rovigo, il quale ultimo potrebbe diventare un'unità specializzata nella lotta contro granate, razzi ecc con sistemi come i C-RAM in apposito sviluppo.
 
Nel 2010 la capacità operativa iniziale dovrà essere raggiunta da questi sistemi. Questi sistemi sono stati pensati per una rapidità di reazione, capacità di ingaggiare missili antiradar, UAV, UCAV, missili balistici, anche con attacchi di saturazione e forti ECM. I tempi di movimentazione, essendo tutto installato su autocarri ad alta mobilità, sono ridotti, e così il personale, altro elemento di costi importanti se si considera che adesso tutti i militari sono professionisti.
 
 
Quanto alla composizione attuale delle batterie SAMP/T, esse hanno il Modulo Radar o MRI, quello di generazione elettrica (MGE), di ingaggio (ME), di lancio (MLT), di Ricarica. Nel caso del tipo italiano c'é anche il Modulo di Comando (MC). I lanciatori per ciascuna batteria sono 4, con la possibilità di crescere fino a 6. Così nel tipo base, i lanciatori sono dotati solo di 32 missili e le armi di ricarica sono pari solo a 1,5 quelle minime per le rampe. Questo dà un'altra idea al riguardo della 'saturazione': al giorno d'oggi, non sarebbe poi molto difficile lasciare senza missili una batteria se si attaccasse con qualche dozzina d'armi, per esempio. Tutto il sistema è dentro shelter da 60 piedi aeroportati restistenti alle EMP, nonché compatibli con il trasporto aereo. I mezzi italiani sono gli Astra 8x8 SM, con carrozzeria a passo B di circa 195 +360 +145 cm tra gli assali, con motore t.d.Iveco Cursor da 450 hp e cambio ZF ECOMAT a 6 rapporti. Il tipo francese è invece su Renault 6x6 RTM 10.000 nella 'testa di serie', ma quest'autocarro, che pure ha avuto una lunga carriera nell'esercito francese, non è durata, in vantaggio al Renault 8x8 KERAX, effettivamente più adatto a portare questo pesante sistema radar e missilistico. La velocità è di 80 kmh su strada, 15 su piste accidentate e 3 nel fuoristrada vero e proprio,nelle peggiori condizioni di marcia. E' possibile sbarcare il modulo dal pianale senza particolari problemi; nel tipo italiano è dotato di un sistema di livellamento e scarico telecomandato e automatico, mentre il sistema francese è simile, ma meno avanzato e a comando manuale. Questo consente di rendere il modulo capace di compensare inclinazioni di 10° trasversali e 5 longitudinali. E' possibile operare entro 20 minuti dall'arrivo e ripartire dopo 15 minuti dall'impiego. Molto meglio del più macchinoso HAWK, che aveva anche più personale. Il tutto è trasportabile su C-130 Hercules. Ogni batteria ha appena 16 persone più 11 del rifornimento.
 
 
Il Modulo Radar non ha personale, ha il radar ARABEL, sviluppato appieno dal 1988 con tecnologia di base derivata dal DRBJ 11, e il primo sistema europeo della categoria (Phased Array) operativo (dal 1997 sulla De Gaulle, entrata in servizio nel 1999). Attualmente opera in banda I (8-9 GHz) con la solita antenna piatta e rotante a 60 giri-min, e con un miglioramento della capacità di copertura tra -5 e +90°, sempre con 2° di apertura fascio, il che concentra l'energia e riduce i lobi laterali (anche in funzione anti-ARM). Ha 2.600 sfasatori e scopre bersagli di 0,5 m2 a 30 km ed aerei fino a 100 km, con sistema di trasmissione potenza TWT e capacità attiva nel localizzare 3D (anche con la quota) 50 bersagli, mentre in modalità passiva può vedere dei sistemi di disturbo; ingaggia fino a 10 bersagli guidandovi 16 missili. Ha varie caratteristiche moderne, tra cui un IFF avanzato della SELEX. L'antenna è ripiegabile dentro lo shelter. Vi sono due calcolatori MARA, uno per il radar e uno per l'IFF.
 
Il Modulo d'ingaggio ha sistemi di protezione NBC, erogazione potenza e due consolle MAGICS con un calcolatore MARA (che ha un programma di oltre 2 milioni di righe appositamente realizzate). VI sono link VHF e sistemi di fibra ottica, link 11 e dal Block 1, il Link 16. Il modulo di comando controlla la situazione e consente di coordinare le operazioni a livello superiore, con 3 occupanti con due consolle e un computer dei tipi già nominati. Il Modulo di lancio ha una rampa di lancio erettile in verticale con 8 missili ASTER con sistemi automatizzati per il controllo, e la possibilità di tirare una coppia di missili in mezzo secondo.
 
Il missile ASTER 30, nell'edizione attuale, è un'arma di capacità notevoli. Nato fin dall'inizio come arma a lancio verticale, l'ASTER nel tipo a più lungo raggio è lungo 4,858 m, pesa 450 kg e raggiunge a fine combustione del secondo stadio i 1.400 m.sec, ovvero 4,6 mach. La gittata effettiva, largamente superiore rispetto a quanto si era prima previsto, varia da un minimo di 3 ad un massimo di 120 km (ma solo contro bersagli non manovranti e con radar più potenti come quelli del PAAMS, ergo ARABEL e S-1850M). Lo stadio n.2 è lungo 2,66 m e pesante 110 kg, diametro 180 mm (vs i 320 mm del booster, che dunque da solo pesa 330 kg). Con il motore a razzo principale acceso solo dopo lo spegnimento del booster, che si stacca per motivi aerodinamici dopo aver funzionato per appena 3,5 secondi, portando il sistema alla massima velocità, velocità che viene quindi solo mantenuta dal motore del missile per il volo 'sostentato'. Il booster ha due ugelli orientabili per dare subito al missile la giusta direzione con alette cruciformi. Il movimento in aria del missile, grazie ai 4 motori a razzo laterali, è migliorato rispetto alle sole superfici di controllo di coda. L'ingaggio finale avviene con l'AD4A in banda Ku da 12-18 GHz con antenna planare con piattaforma INS intermedia della N.Grumman Italia. Anche se la precisione del missile è indipentente dalla portata e si possono ingaggiare bersagli multipli, il costo del seeker attivo di un missile è del 25-35% del totale, nazi quasi il 40% per l'Aster, che peraltro integra anche funzioni di controllo di volo, che quindi sono sotto il suo controllo diretto. In ogni caso, è chiaro perché molti SAM non hanno guida attiva, dati i costi che essa comporta: già i Phoenix erano stati proposti come sistema per la 'difesa navale ravvicinata', ma non se ne fece nulla e si preferì miglioare lo Sparrow; persino oggi, l'ESSM non ha una guida attiva. La spoletta dell'ASTER è un sistema radio di precisione a 4 antenne che coprono 360°, accoppiate in due gruppi, uno per vedere in avanti e l'altro per compiti omnidirezionali. La testata dell'ASTER è realizzata dalla Simmel e pesa 15 kg, per un effetto duplice di frammentazione, con schegge sia leggere e veloci che lente e pesanti, entrambe in tungsteno, la seconda delle quali per scopi ATBM. Le alette aerodinamiche generano portanza in maniera particolare, con la gnerazione di vortici che creano depressioni. Con il sistema PIF-PAF si ottengono accelerazioni importanti, con il PAF (aerodinamico) si arriva a 50 g, con il solo PIF (razzi laterali) 12 g. Questo significa, usando entrambi, realizzare manovre di oltre 60 g.
 
Il missile viene ricaricato dall'MRT, che porta un sistema di ricarica in clip: 8 missili per complessivi 6.840 kg nei loro lanciatori con una gru controllata da un solo uomo. Poi vi è un sistema di assistenza logistica per manutenzioni fino al secondo livello e basato su 5 shelter diversi.
 
Il sistema SAMP/T segue bersagli fino a 100 km, inseguendone fino a 50 mentre altre 50 tracce sono seguibili con dati provenienti dall'esterno. Il missile ingaggia bersagli balistici fino a 900 m.sec, e manovranti fino a 500 m.sec, con quote minime di 60 m, e anche manovranti fino a 9 g e protetti da ECM, con possibilità d'ingaggio anche prossime alla verticale. Modificare la testata di ricerca per localizzare il missile in arrivo aiuta a decidere quando far esplodere il missile, ma l'ideale è arrivare all'impatto diretto. La testata di guerra, una volta modificata per l'impiego ATBM, rilascia verso l'avanti le schegge e non più radialmente. Con questi interventi il SAMP/T sarebbe in grado di ingaggiare bersagli tipo missili balistici da 600 km di gittata. Sono previsti due esperimenti Blue Sparrow nel poligono francese di Biscarosse per testate questa capacità.
 
Ma l'ASTER è troppo piccolo per tutte le necessità, in pratica è una sorta di MICA con un booster e alette di maggiore apertura. La fase successiva, la MCO, dal 2009 comporta il supporto e il mantenimento dei missili presenti. Ma in seguito le capacità ABM sarebbero portate avanti dalla Francia, che non è nel MEADS (differentemente dall'Italia, che ha ancora in servizio i suoi preistorici Nike Hercules, oramai da anni uno sperpero di denaro pubblico, ma motivati dall'attesa prima dei Patriot e poi adesso del MEADS). La prima fase francese prevede un aumento della potenza del booster e migliore software; la seconda, operativa forse nel 2020, vede un missile solo inteso come ABM, pesante quasi 1 tonnellata eppure ancora compatibile con i lanciatori per gli ASTER, anche quelli navali. Esso, l'Aster Block 2, sarebbe simile al THAAD, con un corpo missile del diametro del booster e la capacità di accelerare a mach 6 in meno di 5 secondi, per poi salire fino a mach 7, per recapitare un 'killer veichle' di circa 100 kg con sistema di ricerca IIR e che potrebbe ingaggiare, nello spazio, ordigni a quote tra 20 e 60 km, su distanze fino a 150 km, anche se sono i veloci missili balistici a gittata intermedia da 3.000 km. Naturalmente per questo serve anche un radar migliore, e dal 2003 la Thales è insieme a Raytheon per un nuovo potente radr M3R multimodale per ingaggi aerei e missilistici.
 
Attualmente il SAMP/T non ha ricevuto ordini dall'estero, dove per gli ASTER, inclusi quelli navali, si pensava già nel 1993 ad un mercato di 90 mld di dollari; adesso si parla di conquistare una buona fetta dei 26 mld di dollari che si pensa verranno spesi nel mondo nel settore SAM terrestri, anche se metà sono nel territorio americano e quindi 'off-limits' per gli stranieri. Tra le proposte, la finale per la Finlandia con 4 batterie senza modulo di comando specifico e su autocarri Sisu finlandesi, ma vi sono anche concorsi come quelli in Qatar. Nel frattempo, per questo concorso si è riusciti a migliorare il radar e il software fino ad intercettare un bersaglio a 80 km volante a 10.000 m, il 3 luglio 2008, sfruttando appieno la portata massima del missile. L'offerta al Qatar è di 3 batterie.
 
 
In generale l'ASTER è un successo tecnico. Ma è inficiato da vari inconvenienti. Il tempo di sviluppo, per esempio, è stato un pò troppo lungo, specie per il tipo terrestre, che ha richiesto circa 20 anni di sviluppo per entrare in servizio. E' vantaggioso, come lo è lo Sparrow e l'Aspide, per impieghi SAM terrestri e navali, ma deve superare i problemi posti dalla concorrenza dei sistemi americani ben affermati, del rivale (specie nel settore ABM) THAAD, e dei sistemi russi, cinesi e adesso anche israeliani, in un settore che non ha visto l'Europa protagonista da anni. Mentre nel settore navale, invece, vi sono state parecchie soddisfazioni, ma non ancora un'affermazione netta, a parte quella per i soci fondatori: Arabia Saudita e Singapore non sono certo successi tali da mettere in discussione il predominio americano, mentre in Europa vi sono sì UK, Francia e Italia, ma dall'altro lato Germania, Spagna, Olanda e altre ancora che si sono munite di missili SM-2 dei tipi più prestanti e moderni attuali. Recentemente si è aggiunto anche il Marocco al club dell'ASTER navale, con una FREMM che ha portato ad ordinare i missili per 38 navi, di cui 13-14 in servizio; anche adesso, però, sono programmi in ritardo rispetto a quanto previsto anni fa.
 
In tutto i missili ASTER sono stati costruiti di tipo navale, coe la versione 15 e 30, associati ai radar ARABEL, EMPAR, HERAKLES, SAMPSON, lanciatori Sylver A43 (ASTER 15) e Sylver A50 (ASTER 30), computer MARA e consolle MAGICS II. Il MARA era concepito come computer modulare ed in effetti tale è rimasto visto che a tutt'oggi esiste nel sistema.
 
 
Attualmente, il missile ASTER 15 ha lunghezza di 4,145 m e peso di 325 kg (un pò maggiore rispetto a quello preventivato), velocità di mach 3,3 (1.000 m.sec), gittata 1,7-35 km, quest'ultimo valore nelle condizioni assolutamente più favorevoli.
 
L'ASTER 30 è lungo 4,858 m, peso di 450 kg, mach 4,6 (1.400 m.sec) e gittata tra 3 e ben 120 km; la gittata minima maggiore è dovuta alla maggiore accelerazione del missile che è maggiore dato il booster più potente, da 2.300 mm anziché 1.645 mm, diametro uguale di 32 cm in entrambi i casi. Il missile è chiuso in un contenitore prismatico sigillato lungo 4,3 m con base quadrata di 55 cm, e peso di 550 kg con il missile, mentre con l'ASTER 30 l'altezza arriva a 7 m e il peso a 700 kg. La differenza maggiore tra le navi che volessero passare dall'ASTER 15 all'ASTER 30 è quindi quella dovuta ai quasi 3 m di altezza. Il modulo A50 è capace di ospitare anche i missili a corto raggio, ma non così il contrario. In ogni caso, questi missili sono gli unici disponibili. Il sistema Sylver di lancio è quindi simile all'Mk 48 VLS, ma il Mk 41VLS, seppur pesante, è sia corazzato (almeno sul portello superiore) che capace di ospitare missili di tutti i tipi, anche ASW e cruise, e gli stessi Aster, rispetto ai quali tuttavia è 'sprecato' dato che sono armi piccole. Il sistema PIF ha questo nome perché significa Pilotage en Force, dati i getti deviatori laterali, che ricordano pochi altri sistemi, come quelli, per esempio, dei missili Dragon controcarri. Il sistema ha un radar di ricerca, l'autopilota, la spoletta di prossimità, la batteria, la testata di guerra, il sistema PIF, il motore di sostentazione e le superfici di controllo con i relativi attuatori, il tutto partendo dal muso alla coda dei 2,66 m del missile. L'ingaggio è eseguito con una 'legge proporzionale' per la massima efficienza, il che significa che le manovre vengono impostate a seconda della velocità e della distanza del bersaglio.
 
Nel campo navale, all'ARABEL è stato spesso preferito l'EMPAR, nella MM lo SPY-790, nato da un programma iniziato dal 1986, opera a 4-6GHz ovvero 5-7,5 cm, con antenna di 2 m di alto, inclinata di 30° rispetto alla verticale e dotata di 2.160 sfasatori, meno di quelli dell'ARABEL, ma con maggiore potenza. Essa è racchiusa dentro un radome sferico di 5 m di diametro ed emette fasci 'pencil' di 2,6°x2,6°, con osservazione su di un arco di 120° in elevazione e 90 di direzione, rotazione di 60 giri al minuto. E' un rdar potente, che ha dimostrato di vedere anche proiettili da 76 mm. La banda di lavoro è più bassa e anche per questo maggiore la portata rispetto a quella dell'ARABEL, perché quest'ultimo era limitato dall'uso su autocarri e navi piuttosto piccole. L'EMPAR è capace di vedere un aereo con sezione di 10 m2 fino a 120 km (altre volte la max portata è indicata in 180 km, forse troppo ottimisticamente o forse si riferiscono ad un 747), eppure un missile da 0,1 m2 è possibile fino a 50 km.
 
Il sistema SAMPSON è ancora più potente, con un'antenna a due facce planari rotanti a 30 giri al minuto, e capaci di fatto di fare la stessa funzione delle 4, pesantissime, antenne fisse dell'AEGIS. Esso è della BAe Systems e deriva dal prototipo MESAR della Plessey, in banda E/F (anziché C o G per la NATO dell'EMPAR), pesante 4,6 t e con antenne inclinate verso l'alto, nonostante la disposizione 'schiena contro schiena' di 30°, coperte da un radome in fibra di carbonio). Esso non solo è più leggero dell'SPY-1 americano, ma anche dell'APAR tedesco/olandese/canadese, che è un sistema a 4 facce fisse, e questo gli consente di essere installato su di un alto albero. Inoltre il sistema è attenzione non passivo, ma un phased array '''attivo''', cosa che né l'ARABEL né l'EMPAR sono, almeno nelle attuali configurazioni. Esso ha 2.560 elementi per ciascuna 'faccia' in arseniuro di gallio, con un sistema di comunicazione in fibre ottiche per la gestione del segnale, capace di 12 Gbyte/sec (!). Ogni modulo ha 20 W di potenza, ma anche 4 elementi che danno altrettanti canali da 10 W. Visto che le forme d'onda sono prodotte dall'azione del software di gestione, la portata è espandibile fino ai limiti fisici della frequenza e della potenza disponibili; visto che la potenza è nel suo complesso, molto elevata, si parla di parecchie centinaia di km di portata. Si tratta di prestazioni 'monstre', se è vero che sia possibile vedere un piccione a 105 km di distanza, in condizioni ideali, e un piccione ha una RCS di 0,008 m2: 8 millesimi di m2, ovvero meno di un aereo stealth tipo l'F-117. Inoltre l'antenna ha un sistema di raffreddamento liquido per evitare che la potenza dissipata provochi una forte impronta IR (con una specie di 'effetto camino'). Come per l'EMPAR, vi sono parecchi sistemi sottocoperta, come quelli di elaborazione dati. Nonotante i ritardi, questo sofisticato sistema è adesso in produzione; il primo esemplare, in base ad un contratto di sviluppo del 1999, è stato consegnato nel 2004 ed è servito da un pontone per lanciare i missili ASTER per il programma britannico. Così l'EMPAR non è durato molto al vertice dei radar multifunzione: prima ancora di entrare in servizio con la Cavour e i Doria, si è già ritrovato come concorrenti l'APAR e il MESAR/SAMPSON.
 
 
Nel frattempo l'ARABEL ha cambiato parecchio dell'aspetto originale, presentato nel 2002 a Euronaval nella versione evoluta HERAKLES, in banda S (E/F), che aumenta esponenzialmente le capacità d'ingaggio: 250 km di portata massima, segue oltre 400 tracce metà aeree e metà di superficie, ha tecnologia allo stato solido, funziona con elementi che funzionano come 'lenti a microonde' con capacità di elevare i fasci generati fino a 70°, con un totale di 1.761 sfasatori. E' sistemato in una struttura tronco-piramidale che racchiude 40 moduli da 16 kg che emettono energia verso lo schiera frontale che poi rimanda indietro l'eco, analizzato da una serie di 200 processori. Il peso è di 3 t, l'antenna ruota a 60 giri al minuto e tempi di inizio inseguimento tracce anche di meno di un secondo, due al massimo (oramai l'elettronica fa davvero miracoli, pensare a quel che succedeva spesso alle Falklands nel 1982, per esempio). Questo avanzato radar, capace di superare la versione base il più grosso EMPAR, e che ha ricevuto un ordine per 6 esemplari nel 2004, da parte di Singapore, che per non farsi mancare nulla, ha voluto il meglio per le sue sei fregate 'Formidabile' (le LaFayette di ultima generazione), mentre è previsto anche per le FREMM francesi (originariamente previste in 17 unità).
 
I lanciatori verticali navali sono i Sylver, che hanno seguito un pò una storia a boomerang. Come si è visto nel caso del missile di per sé, sono nati in Francia e poi, nella loro storia recente, dopo la collaborazione con l'Italia, di fatto sono ritornati in Francia per completare l'evoluzione. Del resto l'Italia è adesso impegnata anche nel MEADS. I lanciatori Sylver sono del tipo base A43, i migliorati A50, A70 e A35. Il peso del modulo base di 8 pozzi di lancio è di 8 t e il volume richiesto di 6 m3, ha elevata disponibilità con un MTBF di 12.000 e passa ore (pensare cosa succedeva, invece, in origine con le rampe di lancio motorizzate, ben più spettacolari ma anche inaffidabili), poca manutenzione, elevata rigidità della struttura e resistenza anti-esplosioni, perché i Francesi hanno voluto dei portelli corazzati. Il lancio dei missili avviene a 'raffica', con punte di uno ogni 15 centesimi di secondo (il Mk 41 americano 1 al secondo, i vecchi sistemi a rampa 4-5 al minuto), e la ricarica è possibile (in porto) in 40 minuti. Per i Sylver A43 vi sono i missili ASTER-15 (contenitori sigillati alti 4,3 m), per gli A50 è possibile anche accogliere i contenitori per gli ASTER 30 da 5 metri, ma i SYLVER A70 sono stati pensati per qualcos'altro: lo SCALP Navale, missile da crociera, che la Marina Nationale intende usare per le fregate Forbin con 16 armi. Ovviamente porta anche gli ASTER, il che lo rende finalmente un lanciatore europeo in grado di competere (parzialmente) con i sistemi americani analoghi. I lanciatori comprendono 4 condotti di scarico per i gas emessi durante la combustione dei razzi impulsori ed espellerli verso l'alto, tra le due file di lanciatori verticali. Il piccolo SYLVER A35 accoglie armi da 3,5 m al massimo, ed è usato spesso in configurazioni minime di appena 4 pozzi di lancio. Esso è destinato sopratutto ad accogliere i MICA VL e forse anche il VT-1 (4 missili per pozzo), un'arma destinata, insomma, a piccole navi da guerra.
 
 
Posto che restano le consolle Magics II e il calcolatore MARA, il sistema di comando è diverso a seconda delle nazioni che realizzano le navi, Francia, Italia, e UK.
 
Il PAAMS è la fascia superiore del sistema ASTER, nata nel 1996 su richiesta congiunta britannica (12 sistemi), Francese (4) e Italiana (2+2 in opzione), rimasto elemento comune anche dopo che i britannici si separarono dai 'continentali' (e curiosamente non si associarono agli USA con i missili SM-2, come del resto stavano facendo parecchie nazioni europee); i sistemi radar però si sono differenziati e così le Horizon hanno avuto l'EMPAR e i britannici il SAMPSON per i Type 45 'Daring'. VI è stata una prima fase di sviluppo FSED e poi una di produzione (IP), con 3 sistemi realizzati come 'prototipo' uno per ciascuna nazione,per i Doria, Forbin e Daring. La Fase 2 ha visto dal 2003 partire con altri 7 sistemi, di cui 1 per Italia, 1 per Francia, 5 per i britannici. Alla fine dei 20 sistemi previsti in tutto, se ne sono realizzati molti meno: i Type 45 saranno solo 6, ponendo in grave crisi la RN, che si è ridotta parecchio numericamente.
 
La partecipazione massiccia dei britannici ha richiesto, in termini di organizzazione, la creazione del consorzio Europaams, con i 5/6 per MBDA e 1/6 solo per la Thales, con i due sottosistemi PAAMS(E) che sta per EMPAR, e PAAMS (S) per il SAMPSON; due società hanno gestito i due programmi di cui la Eurosam con controllo MBDA per il 66% vs 33% Thales, e la Uksam con il controllo della MBDA per il 100%. Il sistema SAAM ha tre modalità: autodifesa, difesa delle navi vicine e difesa di formazioni diradate, con quote di 0-20 km e distanze tra 2 e 100 km. Per questi compiti così impegnativi nel campo della gittata è stato aggiunto un radar a lungo raggio 3D: l'S-1850M, della BAe Systems, pesante 6,2 t, lungo 8,2 m, rotante a 12 giri per minuto, antenna stabilizzata ma solo in maniera elettronica e non anche meccanica; esso scopre fino a 1.000 bersagli, anche spaziali entro i 400 km, e persino missili da 0,01 m2 di RCS a 65 km; esso ha 16 fasci controllabili in maniera indipendente, lavora in banda D 1-2 GHz (infatti la banda D NATO corrisponde alla banda L); esso venne scelto nel 1995 battendo l'ASTRAL (che era la versione navale del MARTELLO, pure britannico), lo SMART-L della Thales e anche il RAN-32L di Alenia (ora SELEX S.I.). E' simile a quest'ultimo e ne ha l'antenna, ma con architettura di processamento dei segnali come il MARTELLO, il che gli dà migliori capacità ECCM.
 
 
Per il futuro, le ultime due delle 11 fregate 'Forbin' (FREMM) francesi dovrebbero avere l'HERAKLES e missili ASTER 30 nei lanciatori A70, normalmente destinati agli SCALP, con nuove consolle multifunzione e in generale una configurazione simile a quella delle 'Formidable' di Singapore. L'Italia, che ha visto ridursi le fregate da 10 ad appena 6, vorrebbe invece tutte le navi con il sistema SAAM ESD, ovviamente più costoso, che in concreto significa missili ASTER 15 e ASTER 30 abbinati all'EMPAR, ma senza il radar a lunga portata S 1850 dei 'Doria'. La cosa potrebbe essere ancora sviluppata con il KRONOS, che è l'EMPAR evoluto e dotato finalmente di un sistema 'phased array' attivo, con maggiore portata e precisione, maggiore potenza, e la capacità di lavorare 'da fermo' per localizzare, con l'antenna orientata in una certa direzione, eventuali artiglierie che sparano dalle coste tramite la localizzazione dei loro proiettili, funzionando insomma come i moderni radar di controbatteria come il COBRA. Del resto anche l'HERAKLES, che per quanto evoluto, non è ancora di tipo 'attivo', potrebbe diventare con tali capacità.
 
Infine vi sono le potenzialità per gli ingaggi antibalistici. Ma per il momento sono relegati al solo SAMP/T di terra; mentre le navi con gli Standard SM-2 hanno sviluppato ampiamente tali capacità (anche anti-satellite), e vi sono missili come l'SM-3 e successori (che di fatto violano il trattato ABM), gli Aster navali non sono per ora pensati alla protezione da missili antibalistici. Se si considera che i Cinesi propongono armi di tale tipo con funzioni antinave (vecchia idea sovietica, non passata alla realizzazione), forse è solo questione di tempo prima che verranno chieste tali capacità.
 
Ecco quindi come è andata fin'ora la complessa vicenda dei missili ASTER, che è operativamente appena iniziata e che sarà ben lungi dal concludersi anche dopo il 2030<ref>Po, Enrico: ''L'ASTER navale'', RID nov 2008 p.24-33</ref>.
 
== Note ==