Fisica classica/Moti relativi: differenze tra le versioni
m
cambio avanzamento a 100%
m →Accelerazione relativa: corretto errore nella formula |
m cambio avanzamento a 100% |
||
Riga 1:
Abbiamo iniziato lo studio della cinematica chiarendo il concetto che lo studio di un corpo in movimento e di conseguenza la definizione della sua traiettoria è possibile se definiamo a priori un certo sistema di riferimento rispetto al quale calcolare la posizione del corpo e derivarne le leggi del moto.
Le leggi fisiche ricavate valgono in questo primo sistema di riferimento ma nulla ci impedisce di prenderne in considerazione un
Tutto questo vale se i due sistemi di riferimento sono fissi, ma nel caso uno fosse in moto relativo rispetto all'altro allora le cose cambiano: le leggi sono differenti nei due sistemi di riferimento.
Line 10 ⟶ 8:
Possiamo dire allora che
ed utilizzando le regole di derivazione dei versori e dei vettori e i concetti di relazioni tra spazio, velocità ed accelerazione cerchiamo di ottenere le relazioni vettoriali fondamentali per i due sistemi.
Iniziamo dalla velocità rispetto al sistema fisso: derivando abbiamo che <math>\vec v = \frac{d \vec r}{dt}</math>, quella rispetto ad ''' O' ''' è <math>\vec v_1=\frac{d\vec r_1}{dt}</math> e quella del sistema ''' O' ''' rispetto ad ''' O ''' <math>\vec v_{O'}=\frac {d \vec {OO'}}{dt}</math>
Otteniamo <math>\vec v = \vec v_{O'}+\vec v_1+x'\frac{d \vec u_x'}{dt}+y'\frac{d \vec u_y'}{dt}+z'\frac{d \vec u_z'}{dt}</math> e ricordando che <math>\frac{d \vec u_i}{dt}=\vec \omega \times \vec u_i</math> otteniamo
Questa relazione è il '''teorema delle velocità relative'''
Line 25 ⟶ 23:
Questo termine ha due componenti, una traslatoria legata a <math>\vec v_{O'}</math> ed una rotatoria legata a <math>\vec \omega</math>, corrisponde in generale ad un '''moto rototraslatorio'''.
Ora deriviamo da questa relazione per derivazione la formula dell'accelerazione
Questo è il '''teorema delle accelerazioni relative'''
Line 41 ⟶ 39:
Un sistema in moto rettilineo uniforme non rotazionale rispetto al sistema fisso di riferimento ha le seguenti proprietà <math>\vec v_{O'}= costante , \vec \omega =0 , \vec a{O'}=0</math> e quindi dalle relazioni ricavate precedentemente ricaviamo che l'accelerazione nel sistema in moto vale <math>\vec a_1=\vec a</math> e quindi ne ricaviamo un risultato fondamentale:
Se invece il moto del secondo sistema non è rettileneo uniforme allora siamo in presenza di un contributo dato dalla forza effettiva chiamata '''forza vera''' e da '''forze apparenti''' date dalle accelerazioni di trascinamento e da quella di Coriolis.
Line 49 ⟶ 46:
[[Categoria:Fisica classica|Moti relativi]]
{{Avanzamento|100%|5 ottobre 2008}}
|